M. Á. Mendoza, N. P. D. L. Blanca, M. Marín-Jiménez
{"title":"基于pohm的人体动作识别","authors":"M. Á. Mendoza, N. P. D. L. Blanca, M. Marín-Jiménez","doi":"10.1109/WIAMIS.2009.5031438","DOIUrl":null,"url":null,"abstract":"In this paper we approach the human action recognition task using the Product of Hidden Markov Models (PoHMM). This approach allow us to get large state-space models from the normalized product of several simple HMMs. We compare this mixed graphical model with other directed multi-chain models like Coupled Hidden Markov Model (CHMM) or Factorial Hidden Markov Model (FHMM), so as with Conditional Random Field (CRF), a particular case of undirected graphical models. Our results show that PoHMM outperforms the classification score of these other space-state models on the KTH database using optical flow features.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PoHMM-based human action recognition\",\"authors\":\"M. Á. Mendoza, N. P. D. L. Blanca, M. Marín-Jiménez\",\"doi\":\"10.1109/WIAMIS.2009.5031438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we approach the human action recognition task using the Product of Hidden Markov Models (PoHMM). This approach allow us to get large state-space models from the normalized product of several simple HMMs. We compare this mixed graphical model with other directed multi-chain models like Coupled Hidden Markov Model (CHMM) or Factorial Hidden Markov Model (FHMM), so as with Conditional Random Field (CRF), a particular case of undirected graphical models. Our results show that PoHMM outperforms the classification score of these other space-state models on the KTH database using optical flow features.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we approach the human action recognition task using the Product of Hidden Markov Models (PoHMM). This approach allow us to get large state-space models from the normalized product of several simple HMMs. We compare this mixed graphical model with other directed multi-chain models like Coupled Hidden Markov Model (CHMM) or Factorial Hidden Markov Model (FHMM), so as with Conditional Random Field (CRF), a particular case of undirected graphical models. Our results show that PoHMM outperforms the classification score of these other space-state models on the KTH database using optical flow features.