{"title":"泊松中心极限定理的量子化(1)","authors":"Y. Lu","doi":"10.31390/josa.3.2.04","DOIUrl":null,"url":null,"abstract":". A sequence of binomial random variables, both classical and algebraic, is modelized in terms of the creation–annihilation operators in a natural way and each of these random variables is a sum of four terms. By taking a proper interacting Fock structure, these random variables verify a certain pre–given (classical, Boolean, free, monotone, anti–monotone, etc) independence and the sum of finite independent binomial random variables formulates the corresponding Bernoulli sequence. With the help of such a structure, the Poisson type central limit theorem is quantized by considering individually the contribution of those four terms to the limit. Moreover, its off–diagonal part gives a quantization of the Laplace–de Moivre type central limit theorem.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization of the Poisson Type Central Limit Theorem (1)\",\"authors\":\"Y. Lu\",\"doi\":\"10.31390/josa.3.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A sequence of binomial random variables, both classical and algebraic, is modelized in terms of the creation–annihilation operators in a natural way and each of these random variables is a sum of four terms. By taking a proper interacting Fock structure, these random variables verify a certain pre–given (classical, Boolean, free, monotone, anti–monotone, etc) independence and the sum of finite independent binomial random variables formulates the corresponding Bernoulli sequence. With the help of such a structure, the Poisson type central limit theorem is quantized by considering individually the contribution of those four terms to the limit. Moreover, its off–diagonal part gives a quantization of the Laplace–de Moivre type central limit theorem.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.3.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.3.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantization of the Poisson Type Central Limit Theorem (1)
. A sequence of binomial random variables, both classical and algebraic, is modelized in terms of the creation–annihilation operators in a natural way and each of these random variables is a sum of four terms. By taking a proper interacting Fock structure, these random variables verify a certain pre–given (classical, Boolean, free, monotone, anti–monotone, etc) independence and the sum of finite independent binomial random variables formulates the corresponding Bernoulli sequence. With the help of such a structure, the Poisson type central limit theorem is quantized by considering individually the contribution of those four terms to the limit. Moreover, its off–diagonal part gives a quantization of the Laplace–de Moivre type central limit theorem.