在并行性能监控中寻找最佳点

A. Nataraj, A. Malony, A. Morris, D. Arnold, B. Miller
{"title":"在并行性能监控中寻找最佳点","authors":"A. Nataraj, A. Malony, A. Morris, D. Arnold, B. Miller","doi":"10.1109/CLUSTR.2008.4663757","DOIUrl":null,"url":null,"abstract":"Parallel performance monitoring extends parallel measurement systems with infrastructure and interfaces for online performance data access, communication, and analysis. At the same time it raises concerns for the impact on application execution from monitor overhead. The application monitoring scheme parameterized by performance events to monitor, access frequency and the type of data analysis operation defines a set of monitoring requirements. The monitoring infrastructure presents its own choices, particularly the amount and configuration of resources devoted explicitly to monitoring. The key to scalable, low-overhead parallel performance monitoring is to match the application monitoring demands to the effective operating range of the monitoring system (or vice-versa). A poor match can result in over-provisioning (wasted resources) or in under-provisioning (lack of scalability, high overheads and poor quality of performance data). We present a methodology and evaluation framework to determine the sweet-spots for performance monitoring using TAU and MRNet.","PeriodicalId":198768,"journal":{"name":"2008 IEEE International Conference on Cluster Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"In search of sweet-spots in parallel performance monitoring\",\"authors\":\"A. Nataraj, A. Malony, A. Morris, D. Arnold, B. Miller\",\"doi\":\"10.1109/CLUSTR.2008.4663757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel performance monitoring extends parallel measurement systems with infrastructure and interfaces for online performance data access, communication, and analysis. At the same time it raises concerns for the impact on application execution from monitor overhead. The application monitoring scheme parameterized by performance events to monitor, access frequency and the type of data analysis operation defines a set of monitoring requirements. The monitoring infrastructure presents its own choices, particularly the amount and configuration of resources devoted explicitly to monitoring. The key to scalable, low-overhead parallel performance monitoring is to match the application monitoring demands to the effective operating range of the monitoring system (or vice-versa). A poor match can result in over-provisioning (wasted resources) or in under-provisioning (lack of scalability, high overheads and poor quality of performance data). We present a methodology and evaluation framework to determine the sweet-spots for performance monitoring using TAU and MRNet.\",\"PeriodicalId\":198768,\"journal\":{\"name\":\"2008 IEEE International Conference on Cluster Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2008.4663757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2008.4663757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

并行性能监控扩展了并行测量系统的基础设施和接口,用于在线性能数据访问、通信和分析。同时,它引起了对监视器开销对应用程序执行的影响的关注。应用程序监控方案参数化了要监控的性能事件、访问频率和数据分析操作的类型,定义了一组监控需求。监视基础设施提供了自己的选择,特别是用于监视的资源的数量和配置。可扩展的、低开销的并行性能监视的关键是将应用程序监视需求与监视系统的有效操作范围相匹配(反之亦然)。不匹配可能导致过度配置(浪费资源)或配置不足(缺乏可伸缩性、高开销和性能数据质量差)。我们提出了一种方法和评估框架,以确定使用TAU和MRNet进行性能监测的最佳点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In search of sweet-spots in parallel performance monitoring
Parallel performance monitoring extends parallel measurement systems with infrastructure and interfaces for online performance data access, communication, and analysis. At the same time it raises concerns for the impact on application execution from monitor overhead. The application monitoring scheme parameterized by performance events to monitor, access frequency and the type of data analysis operation defines a set of monitoring requirements. The monitoring infrastructure presents its own choices, particularly the amount and configuration of resources devoted explicitly to monitoring. The key to scalable, low-overhead parallel performance monitoring is to match the application monitoring demands to the effective operating range of the monitoring system (or vice-versa). A poor match can result in over-provisioning (wasted resources) or in under-provisioning (lack of scalability, high overheads and poor quality of performance data). We present a methodology and evaluation framework to determine the sweet-spots for performance monitoring using TAU and MRNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信