超平面和n球之间的相对位置

Joselito de Oliveira
{"title":"超平面和n球之间的相对位置","authors":"Joselito de Oliveira","doi":"10.18227/rct.v5i8.5430","DOIUrl":null,"url":null,"abstract":"This paper discusses are some topics Analytic Geometry, studied in basic education in the context of Euclidean space $ n $-dimensional. Presents itself for example, the concepts of hyperplane and $(n-1)$-sphere, which correspond to the high school to the circle and line, respectively. And in the said geometry are studied the relative positions between line and circumference. Similarly, we study the relative positions between the hyperplane and the $(n-1)$-sphere in this space. In this context, it presents a theorem that characterizes the relative positions. ","PeriodicalId":151370,"journal":{"name":"RCT - Revista de Ciência e Tecnologia","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Positions Between the Hyperplane and the n-Sphere\",\"authors\":\"Joselito de Oliveira\",\"doi\":\"10.18227/rct.v5i8.5430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses are some topics Analytic Geometry, studied in basic education in the context of Euclidean space $ n $-dimensional. Presents itself for example, the concepts of hyperplane and $(n-1)$-sphere, which correspond to the high school to the circle and line, respectively. And in the said geometry are studied the relative positions between line and circumference. Similarly, we study the relative positions between the hyperplane and the $(n-1)$-sphere in this space. In this context, it presents a theorem that characterizes the relative positions. \",\"PeriodicalId\":151370,\"journal\":{\"name\":\"RCT - Revista de Ciência e Tecnologia\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RCT - Revista de Ciência e Tecnologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18227/rct.v5i8.5430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RCT - Revista de Ciência e Tecnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18227/rct.v5i8.5430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了基础教育中解析几何在欧氏n维空间背景下的一些问题。例如,提出了超平面和$(n-1)$-球的概念,它们分别对应于高中的圆和线。并在此基础上研究了线与周长之间的相对位置。同样地,我们研究了超平面与这个空间中$(n-1)$-球之间的相对位置。在这种情况下,它提出了一个表征相对位置的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Positions Between the Hyperplane and the n-Sphere
This paper discusses are some topics Analytic Geometry, studied in basic education in the context of Euclidean space $ n $-dimensional. Presents itself for example, the concepts of hyperplane and $(n-1)$-sphere, which correspond to the high school to the circle and line, respectively. And in the said geometry are studied the relative positions between line and circumference. Similarly, we study the relative positions between the hyperplane and the $(n-1)$-sphere in this space. In this context, it presents a theorem that characterizes the relative positions. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信