方向自适应超分辨率成像

E. Turgay, G. Akar
{"title":"方向自适应超分辨率成像","authors":"E. Turgay, G. Akar","doi":"10.1109/SIU.2009.5136326","DOIUrl":null,"url":null,"abstract":"In this paper a novel edge-preserving super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator uses gradient direction and amount for optimal noise reduction while preserving the edges. Compared to the other edge-preserving methods, the proposed algorithm uses the gradient direction for optimum regularization. The proposed method estimates gradient amplitude and direction at each iteration. This gradient map guides the SR reconstruction stage through iterations. Proposed method is compared against other traditional super resolution methods. Peak-signal-to-noise-ratio (PSNR) measures and illustrations clearly show that the proposed method is successful especially on edge structures in images.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direction Adaptive Super-Resolution Imaging\",\"authors\":\"E. Turgay, G. Akar\",\"doi\":\"10.1109/SIU.2009.5136326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel edge-preserving super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator uses gradient direction and amount for optimal noise reduction while preserving the edges. Compared to the other edge-preserving methods, the proposed algorithm uses the gradient direction for optimum regularization. The proposed method estimates gradient amplitude and direction at each iteration. This gradient map guides the SR reconstruction stage through iterations. Proposed method is compared against other traditional super resolution methods. Peak-signal-to-noise-ratio (PSNR) measures and illustrations clearly show that the proposed method is successful especially on edge structures in images.\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的保边超分辨率图像重建方法。所提出的基于最大后验(MAP)的估计器在保留边缘的同时使用梯度方向和数量来实现最佳降噪。与其他边缘保持方法相比,该算法采用梯度方向进行最优正则化。该方法在每次迭代时估计梯度的幅度和方向。这个梯度图通过迭代指导SR重建阶段。与其他传统的超分辨率方法进行了比较。峰值信噪比(PSNR)测量和实例清楚地表明,该方法是成功的,特别是在图像的边缘结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direction Adaptive Super-Resolution Imaging
In this paper a novel edge-preserving super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator uses gradient direction and amount for optimal noise reduction while preserving the edges. Compared to the other edge-preserving methods, the proposed algorithm uses the gradient direction for optimum regularization. The proposed method estimates gradient amplitude and direction at each iteration. This gradient map guides the SR reconstruction stage through iterations. Proposed method is compared against other traditional super resolution methods. Peak-signal-to-noise-ratio (PSNR) measures and illustrations clearly show that the proposed method is successful especially on edge structures in images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信