迈向无服务器生物信息学网络基础设施管道

S. Yao, Muhammad Ali Gulzar, Liqing Zhang, A. Butt
{"title":"迈向无服务器生物信息学网络基础设施管道","authors":"S. Yao, Muhammad Ali Gulzar, Liqing Zhang, A. Butt","doi":"10.1145/3452413.3464787","DOIUrl":null,"url":null,"abstract":"Function-as-a-Service (FaaS) and the serverless computing model offer a powerful abstraction for supporting large-scale applications in the cloud. A major hurdle in this context is that it is non-trivial to transform an application, even an already containerized one, to a FaaS implementation. In this paper, we take the first step towards supporting easier and efficient application transformation to FaaS. We present a systematic scheme to transform applications written in Python into a set of functions that can then be automatically deployed atop platforms such as AWS Lamda. We target a Bioinformatics cyberinfrastructure pipeline, CIWARS, that provides waste-water analysis for the identification of antibiotic-resistant bacteria and viruses such as SARS-CoV-2. Based on our experience with enabling FaaS-based CIWARS, we develop a methodology that would help the conversion of other similar applications to the FaaS model. Our evaluation shows that our approach can correctly transform CIWARS to FaaS, and the new FaaS-based CIWARS incurs only negligible(≤2%) less than 2% overhead for representative workloads.","PeriodicalId":339058,"journal":{"name":"Proceedings of the 1st Workshop on High Performance Serverless Computing","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards a Serverless Bioinformatics Cyberinfrastructure Pipeline\",\"authors\":\"S. Yao, Muhammad Ali Gulzar, Liqing Zhang, A. Butt\",\"doi\":\"10.1145/3452413.3464787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function-as-a-Service (FaaS) and the serverless computing model offer a powerful abstraction for supporting large-scale applications in the cloud. A major hurdle in this context is that it is non-trivial to transform an application, even an already containerized one, to a FaaS implementation. In this paper, we take the first step towards supporting easier and efficient application transformation to FaaS. We present a systematic scheme to transform applications written in Python into a set of functions that can then be automatically deployed atop platforms such as AWS Lamda. We target a Bioinformatics cyberinfrastructure pipeline, CIWARS, that provides waste-water analysis for the identification of antibiotic-resistant bacteria and viruses such as SARS-CoV-2. Based on our experience with enabling FaaS-based CIWARS, we develop a methodology that would help the conversion of other similar applications to the FaaS model. Our evaluation shows that our approach can correctly transform CIWARS to FaaS, and the new FaaS-based CIWARS incurs only negligible(≤2%) less than 2% overhead for representative workloads.\",\"PeriodicalId\":339058,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on High Performance Serverless Computing\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on High Performance Serverless Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452413.3464787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on High Performance Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452413.3464787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

功能即服务(FaaS)和无服务器计算模型为支持云中的大规模应用程序提供了强大的抽象。这种情况下的一个主要障碍是,将应用程序(即使是已经容器化的应用程序)转换为FaaS实现并非易事。在本文中,我们迈出了第一步,以支持更容易和有效的应用程序到FaaS的转换。我们提出了一个系统的方案,将用Python编写的应用程序转换为一组函数,然后可以自动部署在诸如AWS lambda之类的平台上。我们的目标是生物信息学网络基础设施管道CIWARS,该管道为识别耐抗生素细菌和病毒(如SARS-CoV-2)提供废水分析。根据我们在启用基于FaaS的CIWARS方面的经验,我们开发了一种方法,可以帮助将其他类似的应用程序转换为FaaS模型。我们的评估表明,我们的方法可以正确地将CIWARS转换为FaaS,并且对于代表性工作负载,新的基于FaaS的CIWARS只会产生可忽略不计的(≤2%)不到2%的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Serverless Bioinformatics Cyberinfrastructure Pipeline
Function-as-a-Service (FaaS) and the serverless computing model offer a powerful abstraction for supporting large-scale applications in the cloud. A major hurdle in this context is that it is non-trivial to transform an application, even an already containerized one, to a FaaS implementation. In this paper, we take the first step towards supporting easier and efficient application transformation to FaaS. We present a systematic scheme to transform applications written in Python into a set of functions that can then be automatically deployed atop platforms such as AWS Lamda. We target a Bioinformatics cyberinfrastructure pipeline, CIWARS, that provides waste-water analysis for the identification of antibiotic-resistant bacteria and viruses such as SARS-CoV-2. Based on our experience with enabling FaaS-based CIWARS, we develop a methodology that would help the conversion of other similar applications to the FaaS model. Our evaluation shows that our approach can correctly transform CIWARS to FaaS, and the new FaaS-based CIWARS incurs only negligible(≤2%) less than 2% overhead for representative workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信