{"title":"具有线性中心和无穷远处多重线的实三次微分系统","authors":"A. Suba","doi":"10.36120/2587-3644.v12i2.50-62","DOIUrl":null,"url":null,"abstract":"We classify all cubic differential systems with a linear center and multiple line at infinity up to multiplicity four. For every class with the multiplicity of the line at infinity four the center problem is solved. It is proved that the monodromic points are of the center type if the first three Lyapunov quantities vanish","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real cubic differential systems with a linear center and multiple line at infinity\",\"authors\":\"A. Suba\",\"doi\":\"10.36120/2587-3644.v12i2.50-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify all cubic differential systems with a linear center and multiple line at infinity up to multiplicity four. For every class with the multiplicity of the line at infinity four the center problem is solved. It is proved that the monodromic points are of the center type if the first three Lyapunov quantities vanish\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v12i2.50-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v12i2.50-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real cubic differential systems with a linear center and multiple line at infinity
We classify all cubic differential systems with a linear center and multiple line at infinity up to multiplicity four. For every class with the multiplicity of the line at infinity four the center problem is solved. It is proved that the monodromic points are of the center type if the first three Lyapunov quantities vanish