具有线性中心和无穷远处多重线的实三次微分系统

A. Suba
{"title":"具有线性中心和无穷远处多重线的实三次微分系统","authors":"A. Suba","doi":"10.36120/2587-3644.v12i2.50-62","DOIUrl":null,"url":null,"abstract":"We classify all cubic differential systems with a linear center and multiple line at infinity up to multiplicity four. For every class with the multiplicity of the line at infinity four the center problem is solved. It is proved that the monodromic points are of the center type if the first three Lyapunov quantities vanish","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real cubic differential systems with a linear center and multiple line at infinity\",\"authors\":\"A. Suba\",\"doi\":\"10.36120/2587-3644.v12i2.50-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify all cubic differential systems with a linear center and multiple line at infinity up to multiplicity four. For every class with the multiplicity of the line at infinity four the center problem is solved. It is proved that the monodromic points are of the center type if the first three Lyapunov quantities vanish\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v12i2.50-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v12i2.50-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对所有具有线性中心和无穷多倍线的三次微分系统进行分类。对于每一类具有无穷多倍直线的类,中心问题都得到了解决。证明了如果前三个Lyapunov量消失,单点是中心型的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real cubic differential systems with a linear center and multiple line at infinity
We classify all cubic differential systems with a linear center and multiple line at infinity up to multiplicity four. For every class with the multiplicity of the line at infinity four the center problem is solved. It is proved that the monodromic points are of the center type if the first three Lyapunov quantities vanish
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信