卷积神经网络在印尼语情感分析中的终身学习分析

Zaid Abdurrahman, H. Murfi, Y. Widyaningsih
{"title":"卷积神经网络在印尼语情感分析中的终身学习分析","authors":"Zaid Abdurrahman, H. Murfi, Y. Widyaningsih","doi":"10.1145/3424311.3424331","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a process to obtain the tendency of the authors in an article. Sentiment analysis classifies textual data into a class of positive, negative, or neutral sentiments. CNN is one of the deep learning algorithms capable of classifying textual data into positive, negative, or natural classes. In general, the standard learning methods learn from one domain to produce a model. Another learning paradigm is lifelong learning which is believed to be able to accumulate learning from various domains for learning in the new domain. In this paper, we examine lifelong learning of CNN for sentiment analysis on Indonesian textual data. Our simulation shows that the accuracy of CNN increases with the increase in the number of source domains where CNN learns. This shows that lifelong learning using CNN works well for sentiment analysis on Indonesian textual data.","PeriodicalId":330920,"journal":{"name":"Proceedings of the 2020 International Conference on Internet Computing for Science and Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Convolutional Neural Network for Lifelong Learning on Indonesian Sentiment Analysis\",\"authors\":\"Zaid Abdurrahman, H. Murfi, Y. Widyaningsih\",\"doi\":\"10.1145/3424311.3424331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is a process to obtain the tendency of the authors in an article. Sentiment analysis classifies textual data into a class of positive, negative, or neutral sentiments. CNN is one of the deep learning algorithms capable of classifying textual data into positive, negative, or natural classes. In general, the standard learning methods learn from one domain to produce a model. Another learning paradigm is lifelong learning which is believed to be able to accumulate learning from various domains for learning in the new domain. In this paper, we examine lifelong learning of CNN for sentiment analysis on Indonesian textual data. Our simulation shows that the accuracy of CNN increases with the increase in the number of source domains where CNN learns. This shows that lifelong learning using CNN works well for sentiment analysis on Indonesian textual data.\",\"PeriodicalId\":330920,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Internet Computing for Science and Engineering\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Internet Computing for Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3424311.3424331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Internet Computing for Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424311.3424331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是一个获取文章作者倾向的过程。情感分析将文本数据分为积极、消极或中性情绪。CNN是一种深度学习算法,能够将文本数据分类为正类、负类或自然类。一般来说,标准的学习方法从一个领域学习来产生一个模型。另一种学习范式是终身学习,它被认为能够将不同领域的学习积累起来,用于新领域的学习。在本文中,我们研究了CNN终身学习对印尼语文本数据的情感分析。我们的仿真表明,CNN的准确率随着CNN学习的源域数量的增加而增加。这表明,使用CNN进行终身学习对于印尼语文本数据的情感分析效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Convolutional Neural Network for Lifelong Learning on Indonesian Sentiment Analysis
Sentiment analysis is a process to obtain the tendency of the authors in an article. Sentiment analysis classifies textual data into a class of positive, negative, or neutral sentiments. CNN is one of the deep learning algorithms capable of classifying textual data into positive, negative, or natural classes. In general, the standard learning methods learn from one domain to produce a model. Another learning paradigm is lifelong learning which is believed to be able to accumulate learning from various domains for learning in the new domain. In this paper, we examine lifelong learning of CNN for sentiment analysis on Indonesian textual data. Our simulation shows that the accuracy of CNN increases with the increase in the number of source domains where CNN learns. This shows that lifelong learning using CNN works well for sentiment analysis on Indonesian textual data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信