{"title":"利用末端限制性片段长度多态性(T-RFLP)比较不同管理方式下稻田土壤细菌群落结构","authors":"Do young Kim, Chang-Gi Kim, S. Sohn, Sangkyu Park","doi":"10.5141/JEFB.2008.31.4.309","DOIUrl":null,"url":null,"abstract":"To develop a monitoring method for soil microbial communities in rice paddy fields, we used terminal restriction fragment length polymorphism (T-RFLP) to compare soil bacterial community structure in rice paddy fields experiencing different management practices: organic practices, conventional practices without a winter barley rotation, and conventional practices with a winter barley rotation. Restriction fragment length profiles from soils farmed using organic practices showed very different patterns from those from conventional practices with and without barley rotation. In principal component analyses, restriction fragment profiles in organic practice samples were clearly separated from those in conventional practice samples, while principal component analysis did not show a clear separation for soils farmed using conventional practices with and without barley rotation. The cluster analysis showed that the bacterial species compositions of soils under organic practices were signifi- cantly different from those under conventional practices at the 95% level, but soils under conventional practice with and without barley rotation did not significantly differ. Although the loadings from principal component analyses and the Ribosomal DNA Project II databases suggested candidate species important for soils under organic farming practices, it was very difficult to get detailed bacterial species information from terminal restriction fragment length polymorphism. Rank-abundance diagrams and diversity indices showed that restriction fragment peaks under organic farming showed high Pielou's Evenness Index and the reciprocal of Simpson Index suggesting high bacterial diversity in organically farmed soils.","PeriodicalId":416654,"journal":{"name":"Journal of Ecology and Field Biology","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Soil Bacterial Community Structure in Rice Paddy Fields under Different Management Practices using Terminal Restriction Fragment Length Polymorphism (T-RFLP)\",\"authors\":\"Do young Kim, Chang-Gi Kim, S. Sohn, Sangkyu Park\",\"doi\":\"10.5141/JEFB.2008.31.4.309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop a monitoring method for soil microbial communities in rice paddy fields, we used terminal restriction fragment length polymorphism (T-RFLP) to compare soil bacterial community structure in rice paddy fields experiencing different management practices: organic practices, conventional practices without a winter barley rotation, and conventional practices with a winter barley rotation. Restriction fragment length profiles from soils farmed using organic practices showed very different patterns from those from conventional practices with and without barley rotation. In principal component analyses, restriction fragment profiles in organic practice samples were clearly separated from those in conventional practice samples, while principal component analysis did not show a clear separation for soils farmed using conventional practices with and without barley rotation. The cluster analysis showed that the bacterial species compositions of soils under organic practices were signifi- cantly different from those under conventional practices at the 95% level, but soils under conventional practice with and without barley rotation did not significantly differ. Although the loadings from principal component analyses and the Ribosomal DNA Project II databases suggested candidate species important for soils under organic farming practices, it was very difficult to get detailed bacterial species information from terminal restriction fragment length polymorphism. Rank-abundance diagrams and diversity indices showed that restriction fragment peaks under organic farming showed high Pielou's Evenness Index and the reciprocal of Simpson Index suggesting high bacterial diversity in organically farmed soils.\",\"PeriodicalId\":416654,\"journal\":{\"name\":\"Journal of Ecology and Field Biology\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecology and Field Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5141/JEFB.2008.31.4.309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecology and Field Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5141/JEFB.2008.31.4.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Soil Bacterial Community Structure in Rice Paddy Fields under Different Management Practices using Terminal Restriction Fragment Length Polymorphism (T-RFLP)
To develop a monitoring method for soil microbial communities in rice paddy fields, we used terminal restriction fragment length polymorphism (T-RFLP) to compare soil bacterial community structure in rice paddy fields experiencing different management practices: organic practices, conventional practices without a winter barley rotation, and conventional practices with a winter barley rotation. Restriction fragment length profiles from soils farmed using organic practices showed very different patterns from those from conventional practices with and without barley rotation. In principal component analyses, restriction fragment profiles in organic practice samples were clearly separated from those in conventional practice samples, while principal component analysis did not show a clear separation for soils farmed using conventional practices with and without barley rotation. The cluster analysis showed that the bacterial species compositions of soils under organic practices were signifi- cantly different from those under conventional practices at the 95% level, but soils under conventional practice with and without barley rotation did not significantly differ. Although the loadings from principal component analyses and the Ribosomal DNA Project II databases suggested candidate species important for soils under organic farming practices, it was very difficult to get detailed bacterial species information from terminal restriction fragment length polymorphism. Rank-abundance diagrams and diversity indices showed that restriction fragment peaks under organic farming showed high Pielou's Evenness Index and the reciprocal of Simpson Index suggesting high bacterial diversity in organically farmed soils.