利用遗传算法提高组合视觉系统的图像组合性能

S. Elesina, Olga Lomteva
{"title":"利用遗传算法提高组合视觉系统的图像组合性能","authors":"S. Elesina, Olga Lomteva","doi":"10.1109/MECO.2014.6862682","DOIUrl":null,"url":null,"abstract":"Research of genetic algorithm with the aim to receive optimum settings while it being used in combined vision systems has been carried out. To decrease the complexity in global extremum search advanced angles of virtual terrain model are supposed to be used. System performance is shown to be increased 5 times using such approach.","PeriodicalId":416168,"journal":{"name":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Increase of image combination performance in combined vision systems using genetic algorithm\",\"authors\":\"S. Elesina, Olga Lomteva\",\"doi\":\"10.1109/MECO.2014.6862682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research of genetic algorithm with the aim to receive optimum settings while it being used in combined vision systems has been carried out. To decrease the complexity in global extremum search advanced angles of virtual terrain model are supposed to be used. System performance is shown to be increased 5 times using such approach.\",\"PeriodicalId\":416168,\"journal\":{\"name\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2014.6862682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2014.6862682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了使遗传算法在组合视觉系统中得到最优设置,进行了遗传算法的研究。为了降低全局极值搜索的复杂度,建议使用虚拟地形模型的高级角度。采用这种方法,系统性能提高了5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increase of image combination performance in combined vision systems using genetic algorithm
Research of genetic algorithm with the aim to receive optimum settings while it being used in combined vision systems has been carried out. To decrease the complexity in global extremum search advanced angles of virtual terrain model are supposed to be used. System performance is shown to be increased 5 times using such approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信