多流字压缩算法

Emir Öztürk Altan Mesut, B. Diri
{"title":"多流字压缩算法","authors":"Emir Öztürk Altan Mesut, B. Diri","doi":"10.1109/UBMK.2017.8093552","DOIUrl":null,"url":null,"abstract":"In this article, we present a novel word-based lossless compression algorithm for text files which uses a semi-static model. We named our algorithm as Multi-stream Word-based Compression Algorithm (MWCA), because it stores the compressed forms of the words in three individual streams depending on their frequencies in the text. It also stores two dictionaries and a bit vector as a side information. In our experiments MWCA obtains compression ratio over 3,23 bpc on average and 2,88 bpc on files larger than 50 MB. If a variable length encoder like Huffman Coding is used after MWCA, given ratios will reduce to 2,63 and 2,44 bpc respectively. With the advantage of its multi-stream structure MWCA could become a good solution especially for storing and searching big text data.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stream word-based compression algorithm\",\"authors\":\"Emir Öztürk Altan Mesut, B. Diri\",\"doi\":\"10.1109/UBMK.2017.8093552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a novel word-based lossless compression algorithm for text files which uses a semi-static model. We named our algorithm as Multi-stream Word-based Compression Algorithm (MWCA), because it stores the compressed forms of the words in three individual streams depending on their frequencies in the text. It also stores two dictionaries and a bit vector as a side information. In our experiments MWCA obtains compression ratio over 3,23 bpc on average and 2,88 bpc on files larger than 50 MB. If a variable length encoder like Huffman Coding is used after MWCA, given ratios will reduce to 2,63 and 2,44 bpc respectively. With the advantage of its multi-stream structure MWCA could become a good solution especially for storing and searching big text data.\",\"PeriodicalId\":201903,\"journal\":{\"name\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2017.8093552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的基于单词的文本文件无损压缩算法,该算法使用半静态模型。我们将算法命名为多流基于单词的压缩算法(MWCA),因为它根据单词在文本中的频率将单词的压缩形式存储在三个单独的流中。它还存储了两个字典和一个位向量作为副信息。在我们的实验中,MWCA在大于50 MB的文件上获得的压缩比平均超过3.23 bpc和2.88 bpc。如果在MWCA之后使用像霍夫曼编码这样的可变长度编码器,给定的比率将分别降低到2.63和2.44 bpc。MWCA具有多流结构的优点,尤其对于大文本数据的存储和搜索是一种很好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-stream word-based compression algorithm
In this article, we present a novel word-based lossless compression algorithm for text files which uses a semi-static model. We named our algorithm as Multi-stream Word-based Compression Algorithm (MWCA), because it stores the compressed forms of the words in three individual streams depending on their frequencies in the text. It also stores two dictionaries and a bit vector as a side information. In our experiments MWCA obtains compression ratio over 3,23 bpc on average and 2,88 bpc on files larger than 50 MB. If a variable length encoder like Huffman Coding is used after MWCA, given ratios will reduce to 2,63 and 2,44 bpc respectively. With the advantage of its multi-stream structure MWCA could become a good solution especially for storing and searching big text data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信