在给定环空中具有最小面积的等宽体

A. Henrot, I. Lucardesi
{"title":"在给定环空中具有最小面积的等宽体","authors":"A. Henrot, I. Lucardesi","doi":"10.5802/JEP.150","DOIUrl":null,"url":null,"abstract":"In this paper we address the following shape optimization problem: find the planar domain of least area, among the sets with prescribed constant width and inradius. In the literature, the problem is ascribed to Bonnesen, who proposed it in \\cite{BF}. In the present work, we give a complete answer to the problem, providing an explicit characterization of optimal sets for every choice of width and inradius. These optimal sets are particular Reuleaux polygons.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Body of constant width with minimal area in a given annulus\",\"authors\":\"A. Henrot, I. Lucardesi\",\"doi\":\"10.5802/JEP.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the following shape optimization problem: find the planar domain of least area, among the sets with prescribed constant width and inradius. In the literature, the problem is ascribed to Bonnesen, who proposed it in \\\\cite{BF}. In the present work, we give a complete answer to the problem, providing an explicit characterization of optimal sets for every choice of width and inradius. These optimal sets are particular Reuleaux polygons.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究形状优化问题:在给定宽度和半径的集合中求出面积最小的平面域。在文献中,这个问题是由Bonnesen提出的,他在\cite{BF}中提出了这个问题。在目前的工作中,我们给出了这个问题的完整答案,提供了每个宽度和半径选择的最优集的明确表征。这些最优集合是特定的勒洛多边形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Body of constant width with minimal area in a given annulus
In this paper we address the following shape optimization problem: find the planar domain of least area, among the sets with prescribed constant width and inradius. In the literature, the problem is ascribed to Bonnesen, who proposed it in \cite{BF}. In the present work, we give a complete answer to the problem, providing an explicit characterization of optimal sets for every choice of width and inradius. These optimal sets are particular Reuleaux polygons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信