基于深度CNN的空间微运动目标分类

Yizhe Wang, C. Feng, Yongshun Zhang, Qichao Ge
{"title":"基于深度CNN的空间微运动目标分类","authors":"Yizhe Wang, C. Feng, Yongshun Zhang, Qichao Ge","doi":"10.1109/ICEICT.2019.8846441","DOIUrl":null,"url":null,"abstract":"There exist a variety of micro-motions in space targets, including nutation, precession and spinning. Accurate acquisition of the micro-motion form is a prerequisite for estimating motion and structure parameters of ballistic targets. Firstly, we analyze the micro-Doppler representations under three kinds of micro-motion forms, and the time-frequency maps of radar echo signal are generated as the data set. Then we retrain AlexNet and SqueezeNet using transfer learning to classify the micro-motion form. We also study the effect of noise on the classification performance. Simulation results show the effectiveness of the proposed method, which provides an instructive value for the space target recognition.","PeriodicalId":382686,"journal":{"name":"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of Space Targets with Micro-motion Based on Deep CNN\",\"authors\":\"Yizhe Wang, C. Feng, Yongshun Zhang, Qichao Ge\",\"doi\":\"10.1109/ICEICT.2019.8846441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist a variety of micro-motions in space targets, including nutation, precession and spinning. Accurate acquisition of the micro-motion form is a prerequisite for estimating motion and structure parameters of ballistic targets. Firstly, we analyze the micro-Doppler representations under three kinds of micro-motion forms, and the time-frequency maps of radar echo signal are generated as the data set. Then we retrain AlexNet and SqueezeNet using transfer learning to classify the micro-motion form. We also study the effect of noise on the classification performance. Simulation results show the effectiveness of the proposed method, which provides an instructive value for the space target recognition.\",\"PeriodicalId\":382686,\"journal\":{\"name\":\"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT.2019.8846441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2019.8846441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

空间目标存在着多种微运动,包括章动、进动和自旋。精确获取微运动形态是估算弹道目标运动参数和结构参数的前提。首先分析了三种微运动形式下的微多普勒表示,生成了雷达回波信号的时频图作为数据集;然后使用迁移学习对AlexNet和SqueezeNet进行再训练,对微动形式进行分类。我们还研究了噪声对分类性能的影响。仿真结果表明了该方法的有效性,对空间目标识别具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Space Targets with Micro-motion Based on Deep CNN
There exist a variety of micro-motions in space targets, including nutation, precession and spinning. Accurate acquisition of the micro-motion form is a prerequisite for estimating motion and structure parameters of ballistic targets. Firstly, we analyze the micro-Doppler representations under three kinds of micro-motion forms, and the time-frequency maps of radar echo signal are generated as the data set. Then we retrain AlexNet and SqueezeNet using transfer learning to classify the micro-motion form. We also study the effect of noise on the classification performance. Simulation results show the effectiveness of the proposed method, which provides an instructive value for the space target recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信