{"title":"LED模组多物理场方法","authors":"T. Renaudin, J. Joly, B. Hamon, B. Tothe","doi":"10.1109/THERMINIC.2016.7749050","DOIUrl":null,"url":null,"abstract":"Since the start of the Ledification of lighting systems, the multi-physic “optical, electrical, thermal” characterization of LED light sources is a critical task in Philips Lighting. Dedicated teams are responsible for determining multi-physic models and design-in rules of LED modules which will be later integrated in luminaires (lighting systems). Recent works have focus on generating more and more accurate LED Module mutli-physics models. These models have been used to predict and guaranty the performance, reliability and safety of the developed luminaires. In this paper, recent results regarding multi-physics models are exposed. The evolution of the test methods and equipment is discussed highlighting the major challenges in the definition of “boundary independent” LED modules models. In addition, an inter laboratory comparison has been conducted on T3ster equipment. The comparison outcomes have been gathered to provide a non-exhaustive, but useful identification of discrepancies root causes and sources of uncertainty. In this paper some guidelines will be provided to limit them.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LED module multi-physic approach\",\"authors\":\"T. Renaudin, J. Joly, B. Hamon, B. Tothe\",\"doi\":\"10.1109/THERMINIC.2016.7749050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the start of the Ledification of lighting systems, the multi-physic “optical, electrical, thermal” characterization of LED light sources is a critical task in Philips Lighting. Dedicated teams are responsible for determining multi-physic models and design-in rules of LED modules which will be later integrated in luminaires (lighting systems). Recent works have focus on generating more and more accurate LED Module mutli-physics models. These models have been used to predict and guaranty the performance, reliability and safety of the developed luminaires. In this paper, recent results regarding multi-physics models are exposed. The evolution of the test methods and equipment is discussed highlighting the major challenges in the definition of “boundary independent” LED modules models. In addition, an inter laboratory comparison has been conducted on T3ster equipment. The comparison outcomes have been gathered to provide a non-exhaustive, but useful identification of discrepancies root causes and sources of uncertainty. In this paper some guidelines will be provided to limit them.\",\"PeriodicalId\":143150,\"journal\":{\"name\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"volume\":\"400 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC.2016.7749050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Since the start of the Ledification of lighting systems, the multi-physic “optical, electrical, thermal” characterization of LED light sources is a critical task in Philips Lighting. Dedicated teams are responsible for determining multi-physic models and design-in rules of LED modules which will be later integrated in luminaires (lighting systems). Recent works have focus on generating more and more accurate LED Module mutli-physics models. These models have been used to predict and guaranty the performance, reliability and safety of the developed luminaires. In this paper, recent results regarding multi-physics models are exposed. The evolution of the test methods and equipment is discussed highlighting the major challenges in the definition of “boundary independent” LED modules models. In addition, an inter laboratory comparison has been conducted on T3ster equipment. The comparison outcomes have been gathered to provide a non-exhaustive, but useful identification of discrepancies root causes and sources of uncertainty. In this paper some guidelines will be provided to limit them.