一种基于峰度的线性非高斯无环数据因果发现方法

Ruichu Cai, Feng Xie, Wei Chen, Z. Hao
{"title":"一种基于峰度的线性非高斯无环数据因果发现方法","authors":"Ruichu Cai, Feng Xie, Wei Chen, Z. Hao","doi":"10.1109/IWQoS.2017.7969175","DOIUrl":null,"url":null,"abstract":"Understanding the causality behind the observational data is of great importance to a lot of real world applications, e.g., the improvement of Quality of Service. Non-Gaussianity has been exploited in numerous causal discovery methods for observational linear acyclic data. Transforming non-Gaussianity into indirect metrics is a conventional solution employed by existing methods, although this usually results in unreliable estimations or locally optimal solutions. In this work, we employs the excess kurtosis, a direct measure of non-Gaussianity, to establish a causal discovery method for linear non-Gaussian acyclic data. Firstly, we theoretically prove that an exogenous variable has the largest excess kurtosis when disturbance variables follow independent and identically distributions. Secondly, based on this property of exogenous variables, we propose an efficient exogenous variable identification algorithm, and develop a causal discovery method. Extensive experiment results verify the effectiveness and efficiency of the proposed approach.","PeriodicalId":422861,"journal":{"name":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient kurtosis-based causal discovery method for linear non-Gaussian acyclic data\",\"authors\":\"Ruichu Cai, Feng Xie, Wei Chen, Z. Hao\",\"doi\":\"10.1109/IWQoS.2017.7969175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the causality behind the observational data is of great importance to a lot of real world applications, e.g., the improvement of Quality of Service. Non-Gaussianity has been exploited in numerous causal discovery methods for observational linear acyclic data. Transforming non-Gaussianity into indirect metrics is a conventional solution employed by existing methods, although this usually results in unreliable estimations or locally optimal solutions. In this work, we employs the excess kurtosis, a direct measure of non-Gaussianity, to establish a causal discovery method for linear non-Gaussian acyclic data. Firstly, we theoretically prove that an exogenous variable has the largest excess kurtosis when disturbance variables follow independent and identically distributions. Secondly, based on this property of exogenous variables, we propose an efficient exogenous variable identification algorithm, and develop a causal discovery method. Extensive experiment results verify the effectiveness and efficiency of the proposed approach.\",\"PeriodicalId\":422861,\"journal\":{\"name\":\"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2017.7969175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2017.7969175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解观测数据背后的因果关系对许多现实世界的应用非常重要,例如,提高服务质量。非高斯性已经在许多观测线性无循环数据的因果发现方法中得到利用。将非高斯性转换为间接度量是现有方法采用的常规解决方案,尽管这通常会导致不可靠的估计或局部最优解。在这项工作中,我们采用非高斯性的直接度量——超额峰度,建立了线性非高斯非循环数据的因果发现方法。首先,我们从理论上证明了当扰动变量服从独立且相同的分布时,外生变量具有最大的超额峰度。其次,基于外生变量的这一特性,提出了一种高效的外生变量识别算法,并开发了一种因果发现方法。大量的实验结果验证了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient kurtosis-based causal discovery method for linear non-Gaussian acyclic data
Understanding the causality behind the observational data is of great importance to a lot of real world applications, e.g., the improvement of Quality of Service. Non-Gaussianity has been exploited in numerous causal discovery methods for observational linear acyclic data. Transforming non-Gaussianity into indirect metrics is a conventional solution employed by existing methods, although this usually results in unreliable estimations or locally optimal solutions. In this work, we employs the excess kurtosis, a direct measure of non-Gaussianity, to establish a causal discovery method for linear non-Gaussian acyclic data. Firstly, we theoretically prove that an exogenous variable has the largest excess kurtosis when disturbance variables follow independent and identically distributions. Secondly, based on this property of exogenous variables, we propose an efficient exogenous variable identification algorithm, and develop a causal discovery method. Extensive experiment results verify the effectiveness and efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信