基于Stern-Brocot树的多秘密共享方案

Run-hua Shi, Hong Zhong
{"title":"基于Stern-Brocot树的多秘密共享方案","authors":"Run-hua Shi, Hong Zhong","doi":"10.1109/ICINIS.2008.82","DOIUrl":null,"url":null,"abstract":"In 2004, Yang et al. proposed an efficient multi-secret sharing scheme based on two-variable one-way function and Shamirpsilas secret sharing, which needs to reconstruct a (t-1) or (p-1)th degree Lagrange interpolation polynomial. This paper proposes a more efficient multi-secret sharing scheme based on Yang et al.'s scheme and the Stern-Brocot tree, which needs to reconstruct a (t-1) or (p/2-1)th degree Lagrange interpolation polynomial. Thus, the computing time and the storage cost of this scheme is less than that of Yang et al.'s scheme.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Secret Sharing Scheme Based on the Stern-Brocot Tree\",\"authors\":\"Run-hua Shi, Hong Zhong\",\"doi\":\"10.1109/ICINIS.2008.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2004, Yang et al. proposed an efficient multi-secret sharing scheme based on two-variable one-way function and Shamirpsilas secret sharing, which needs to reconstruct a (t-1) or (p-1)th degree Lagrange interpolation polynomial. This paper proposes a more efficient multi-secret sharing scheme based on Yang et al.'s scheme and the Stern-Brocot tree, which needs to reconstruct a (t-1) or (p/2-1)th degree Lagrange interpolation polynomial. Thus, the computing time and the storage cost of this scheme is less than that of Yang et al.'s scheme.\",\"PeriodicalId\":185739,\"journal\":{\"name\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINIS.2008.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2004年,Yang等人提出了一种基于双变量单向函数和Shamirpsilas秘密共享的高效多秘密共享方案,该方案需要重构一个(t-1)或(p-1)次Lagrange插值多项式。本文基于Yang等人的方案和Stern-Brocot树提出了一种更高效的多秘密共享方案,该方案需要重构一个(t-1)或(p/2-1)次拉格朗日插值多项式。因此,该方案的计算时间和存储成本都小于Yang等人的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Secret Sharing Scheme Based on the Stern-Brocot Tree
In 2004, Yang et al. proposed an efficient multi-secret sharing scheme based on two-variable one-way function and Shamirpsilas secret sharing, which needs to reconstruct a (t-1) or (p-1)th degree Lagrange interpolation polynomial. This paper proposes a more efficient multi-secret sharing scheme based on Yang et al.'s scheme and the Stern-Brocot tree, which needs to reconstruct a (t-1) or (p/2-1)th degree Lagrange interpolation polynomial. Thus, the computing time and the storage cost of this scheme is less than that of Yang et al.'s scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信