系统生物学中的平行随机模拟器:物种的进化

Marco Aldinucci, M. Drocco, Fabio Tordini, M. Coppo, M. Torquati
{"title":"系统生物学中的平行随机模拟器:物种的进化","authors":"Marco Aldinucci, M. Drocco, Fabio Tordini, M. Coppo, M. Torquati","doi":"10.1109/PDP.2013.66","DOIUrl":null,"url":null,"abstract":"The stochastic simulation of biological systems is an increasingly popular technique in Bioinformatics. It is often an enlightening technique, especially for multi-stable systems which dynamics can be hardly captured with ordinary differential equations. To be effective, stochastic simulations should be supported by powerful statistical analysis tools. The simulation-analysis workflow may however result in being computationally expensive, thus compromising the interactivity required in model tuning. In this work we advocate the high-level design of simulators for stochastic systems as a vehicle for building efficient and portable parallel simulators. In particular, the Calculus of Wrapped Components (CWC) simulator, which is designed according to the FastFlow's pattern-based approach, is presented and discussed in this work. FastFlow has been extended to support also clusters of multi-cores with minimal coding effort, assessing the portability of the approach.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel Stochastic Simulators in System Biology: The Evolution of the Species\",\"authors\":\"Marco Aldinucci, M. Drocco, Fabio Tordini, M. Coppo, M. Torquati\",\"doi\":\"10.1109/PDP.2013.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic simulation of biological systems is an increasingly popular technique in Bioinformatics. It is often an enlightening technique, especially for multi-stable systems which dynamics can be hardly captured with ordinary differential equations. To be effective, stochastic simulations should be supported by powerful statistical analysis tools. The simulation-analysis workflow may however result in being computationally expensive, thus compromising the interactivity required in model tuning. In this work we advocate the high-level design of simulators for stochastic systems as a vehicle for building efficient and portable parallel simulators. In particular, the Calculus of Wrapped Components (CWC) simulator, which is designed according to the FastFlow's pattern-based approach, is presented and discussed in this work. FastFlow has been extended to support also clusters of multi-cores with minimal coding effort, assessing the portability of the approach.\",\"PeriodicalId\":202977,\"journal\":{\"name\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2013.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物系统的随机模拟是生物信息学中一项日益流行的技术。它通常是一种具有启发性的技术,特别是对于多稳定系统,其动力学很难用常微分方程来描述。为了使随机模拟有效,必须有强大的统计分析工具支持。然而,仿真分析工作流可能会导致计算成本过高,从而损害模型调优所需的交互性。在这项工作中,我们提倡对随机系统的模拟器进行高级设计,作为构建高效便携式并行模拟器的载体。特别是,根据FastFlow基于模式的方法设计的包裹组件演算(CWC)模拟器,在本工作中进行了介绍和讨论。FastFlow已经扩展到以最少的编码工作量支持多核集群,并评估了该方法的可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Stochastic Simulators in System Biology: The Evolution of the Species
The stochastic simulation of biological systems is an increasingly popular technique in Bioinformatics. It is often an enlightening technique, especially for multi-stable systems which dynamics can be hardly captured with ordinary differential equations. To be effective, stochastic simulations should be supported by powerful statistical analysis tools. The simulation-analysis workflow may however result in being computationally expensive, thus compromising the interactivity required in model tuning. In this work we advocate the high-level design of simulators for stochastic systems as a vehicle for building efficient and portable parallel simulators. In particular, the Calculus of Wrapped Components (CWC) simulator, which is designed according to the FastFlow's pattern-based approach, is presented and discussed in this work. FastFlow has been extended to support also clusters of multi-cores with minimal coding effort, assessing the portability of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信