均匀热流下具有无限排平行裂纹的弹性半平面的热力学响应

S. Ueda, J. Ando
{"title":"均匀热流下具有无限排平行裂纹的弹性半平面的热力学响应","authors":"S. Ueda, J. Ando","doi":"10.1299/JSMEA.49.250","DOIUrl":null,"url":null,"abstract":"In this study, thermal singular stresses in an elastic half-plane containing an infinite row of parallel cracks perpendicular to the boundary is considered. The half-plane is subjected to a uniform heat flux and a uniform mechanical load. The crack surfaces and free surface of the half-plane are maintained at uniform temperatures. The Fourier transform techniques are used to formulate the problem in terms of singular integral equations. The singular integral equations are solved by using the Gauss-Jacobi integration formula. Both the cases of an internal crack and an edge crack are studied. Numerical calculations are carried out, and the effects of the geometric parameters on the temperature-thermal stress distributions and the thermal stress intensity factors are shown graphically.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermal Mechanical Response of Elastic Half-Plane with Infinite Row of Parallel Cracks under Uniform Heat Flux\",\"authors\":\"S. Ueda, J. Ando\",\"doi\":\"10.1299/JSMEA.49.250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, thermal singular stresses in an elastic half-plane containing an infinite row of parallel cracks perpendicular to the boundary is considered. The half-plane is subjected to a uniform heat flux and a uniform mechanical load. The crack surfaces and free surface of the half-plane are maintained at uniform temperatures. The Fourier transform techniques are used to formulate the problem in terms of singular integral equations. The singular integral equations are solved by using the Gauss-Jacobi integration formula. Both the cases of an internal crack and an edge crack are studied. Numerical calculations are carried out, and the effects of the geometric parameters on the temperature-thermal stress distributions and the thermal stress intensity factors are shown graphically.\",\"PeriodicalId\":170519,\"journal\":{\"name\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA.49.250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了含有无限行平行裂纹的弹性半平面上的热奇异应力。半平面受到均匀的热流和均匀的机械负荷。半平面的裂纹面和自由面均保持在均匀温度下。傅里叶变换技术用于将问题以奇异积分方程的形式表述出来。利用高斯-雅可比积分公式求解奇异积分方程。研究了内部裂纹和边缘裂纹两种情况。通过数值计算,给出了几何参数对温度-热应力分布和热应力强度因子的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Mechanical Response of Elastic Half-Plane with Infinite Row of Parallel Cracks under Uniform Heat Flux
In this study, thermal singular stresses in an elastic half-plane containing an infinite row of parallel cracks perpendicular to the boundary is considered. The half-plane is subjected to a uniform heat flux and a uniform mechanical load. The crack surfaces and free surface of the half-plane are maintained at uniform temperatures. The Fourier transform techniques are used to formulate the problem in terms of singular integral equations. The singular integral equations are solved by using the Gauss-Jacobi integration formula. Both the cases of an internal crack and an edge crack are studied. Numerical calculations are carried out, and the effects of the geometric parameters on the temperature-thermal stress distributions and the thermal stress intensity factors are shown graphically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信