{"title":"固体推进剂静电场的有限元模拟","authors":"V.R.D. SunderRaj, J. D. Curry, R. Larson","doi":"10.1109/NSEMC.1989.37164","DOIUrl":null,"url":null,"abstract":"Features of solid propellants that make them particularly susceptible to electrostatic discharges are described. Since the use of finite-element techniques has proven to be the most satisfactory approach to determining electrostatic fields inside complicated solid propellant geometries, the authors' emphasis is placed on ways to obtain accurate results, on the accuracy of the results using special test cases, and on the details of preprocessing and postprocessing the fields. Examples are given from hazards analyses performed on solid rocket motors. The transferability of the finite element modeling method to other electrostatic applications is briefly noted. The finite element technique has shown significant advantages in: solution accuracy; simplifying interaction during problem setup; ease of obtaining solution; display and interpretation of results; efficient use of computing time; and decreasing total solution time.<<ETX>>","PeriodicalId":408694,"journal":{"name":"National Symposium on Electromagnetic Compatibility","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of electrostatic fields in solid propellants using finite element techniques\",\"authors\":\"V.R.D. SunderRaj, J. D. Curry, R. Larson\",\"doi\":\"10.1109/NSEMC.1989.37164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Features of solid propellants that make them particularly susceptible to electrostatic discharges are described. Since the use of finite-element techniques has proven to be the most satisfactory approach to determining electrostatic fields inside complicated solid propellant geometries, the authors' emphasis is placed on ways to obtain accurate results, on the accuracy of the results using special test cases, and on the details of preprocessing and postprocessing the fields. Examples are given from hazards analyses performed on solid rocket motors. The transferability of the finite element modeling method to other electrostatic applications is briefly noted. The finite element technique has shown significant advantages in: solution accuracy; simplifying interaction during problem setup; ease of obtaining solution; display and interpretation of results; efficient use of computing time; and decreasing total solution time.<<ETX>>\",\"PeriodicalId\":408694,\"journal\":{\"name\":\"National Symposium on Electromagnetic Compatibility\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSEMC.1989.37164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSEMC.1989.37164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of electrostatic fields in solid propellants using finite element techniques
Features of solid propellants that make them particularly susceptible to electrostatic discharges are described. Since the use of finite-element techniques has proven to be the most satisfactory approach to determining electrostatic fields inside complicated solid propellant geometries, the authors' emphasis is placed on ways to obtain accurate results, on the accuracy of the results using special test cases, and on the details of preprocessing and postprocessing the fields. Examples are given from hazards analyses performed on solid rocket motors. The transferability of the finite element modeling method to other electrostatic applications is briefly noted. The finite element technique has shown significant advantages in: solution accuracy; simplifying interaction during problem setup; ease of obtaining solution; display and interpretation of results; efficient use of computing time; and decreasing total solution time.<>