基于推理自编码器的异常弹性网络入侵检测

Abdul Hannan, Christian Gruhl, B. Sick
{"title":"基于推理自编码器的异常弹性网络入侵检测","authors":"Abdul Hannan, Christian Gruhl, B. Sick","doi":"10.1109/CSR51186.2021.9527980","DOIUrl":null,"url":null,"abstract":"This article focuses on the application of conditional variational autoencoders as anomaly detectors to identify emerging threats in computer networks. Autoencoders are machine learning techniques that are used to find lower-dimensional representations, i.e. an encoding in latent space, from input space. With variational Autoencoders (VAE) this representation is not a single code word or vector but a probability distribution – greatly improving the robustness of the coding scheme. In contrast to VAE, we present a conditional variational autoencoder (CVAE), which uses the latent representation to encode regular and malicious network traffic into a bimodal distribution. While regular autoencoders are unsupervised, we require some labeled data to tune the bimodal representations, thus turning the learning problem into a semi-supervised classification task. However, unknown threats (i.e. those not contained in labeled training data) can be detected as well. In our presented case study, based on available computer network datasets (KDD99 and CIC-IDS2017), we could improve the detection of unknown threats compared to conventional approaches. Our experiments are publicly available.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"116 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anomaly based Resilient Network Intrusion Detection using Inferential Autoencoders\",\"authors\":\"Abdul Hannan, Christian Gruhl, B. Sick\",\"doi\":\"10.1109/CSR51186.2021.9527980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the application of conditional variational autoencoders as anomaly detectors to identify emerging threats in computer networks. Autoencoders are machine learning techniques that are used to find lower-dimensional representations, i.e. an encoding in latent space, from input space. With variational Autoencoders (VAE) this representation is not a single code word or vector but a probability distribution – greatly improving the robustness of the coding scheme. In contrast to VAE, we present a conditional variational autoencoder (CVAE), which uses the latent representation to encode regular and malicious network traffic into a bimodal distribution. While regular autoencoders are unsupervised, we require some labeled data to tune the bimodal representations, thus turning the learning problem into a semi-supervised classification task. However, unknown threats (i.e. those not contained in labeled training data) can be detected as well. In our presented case study, based on available computer network datasets (KDD99 and CIC-IDS2017), we could improve the detection of unknown threats compared to conventional approaches. Our experiments are publicly available.\",\"PeriodicalId\":253300,\"journal\":{\"name\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"116 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR51186.2021.9527980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文重点研究了条件变分自编码器作为异常检测器的应用,以识别计算机网络中出现的威胁。自编码器是一种机器学习技术,用于从输入空间中寻找低维表示,即潜在空间中的编码。对于变分自编码器(VAE),这种表示不是单个码字或向量,而是一个概率分布——极大地提高了编码方案的鲁棒性。与VAE相比,我们提出了一种条件变分自编码器(CVAE),它使用潜在表示将正常和恶意网络流量编码成双峰分布。虽然常规的自编码器是无监督的,但我们需要一些标记数据来调整双峰表示,从而将学习问题转变为半监督分类任务。然而,未知的威胁(即未包含在标记训练数据中的威胁)也可以被检测到。在我们提出的案例研究中,基于可用的计算机网络数据集(KDD99和CIC-IDS2017),与传统方法相比,我们可以改进对未知威胁的检测。我们的实验是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly based Resilient Network Intrusion Detection using Inferential Autoencoders
This article focuses on the application of conditional variational autoencoders as anomaly detectors to identify emerging threats in computer networks. Autoencoders are machine learning techniques that are used to find lower-dimensional representations, i.e. an encoding in latent space, from input space. With variational Autoencoders (VAE) this representation is not a single code word or vector but a probability distribution – greatly improving the robustness of the coding scheme. In contrast to VAE, we present a conditional variational autoencoder (CVAE), which uses the latent representation to encode regular and malicious network traffic into a bimodal distribution. While regular autoencoders are unsupervised, we require some labeled data to tune the bimodal representations, thus turning the learning problem into a semi-supervised classification task. However, unknown threats (i.e. those not contained in labeled training data) can be detected as well. In our presented case study, based on available computer network datasets (KDD99 and CIC-IDS2017), we could improve the detection of unknown threats compared to conventional approaches. Our experiments are publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信