基于遗传规划的L-GEM Q值与训练数据之间函数关系的经验估计

Zhi-Qian Huang, Wing W. Y. Ng
{"title":"基于遗传规划的L-GEM Q值与训练数据之间函数关系的经验估计","authors":"Zhi-Qian Huang, Wing W. Y. Ng","doi":"10.1109/ICMLC.2012.6358937","DOIUrl":null,"url":null,"abstract":"The Localized Generalization Error Model (L-GEM) provides a practical framework for evaluating generalization capability of a learning machine , e.g. neural network. The Q value of the L-GEM controls the coverage of unseen samples under evaluation. Owing to the nonlinear and real unknown relationship of unseen samples and their generalization error, different Q values yield different L-GEM values. In this paper, we adopt an evolutionary procedure based on genetic programming and artificial datasets to estimate functional relationship between Q values and statistics of training samples. In this first empirical study, a simple training samples generated from two two-dimensional Gaussian distribution is adopted. Resulting formulae provide hints to select optimal Q value for given classification problems.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical estimation of functional relationships between Q value of the L-GEM and training data using genetic programming\",\"authors\":\"Zhi-Qian Huang, Wing W. Y. Ng\",\"doi\":\"10.1109/ICMLC.2012.6358937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Localized Generalization Error Model (L-GEM) provides a practical framework for evaluating generalization capability of a learning machine , e.g. neural network. The Q value of the L-GEM controls the coverage of unseen samples under evaluation. Owing to the nonlinear and real unknown relationship of unseen samples and their generalization error, different Q values yield different L-GEM values. In this paper, we adopt an evolutionary procedure based on genetic programming and artificial datasets to estimate functional relationship between Q values and statistics of training samples. In this first empirical study, a simple training samples generated from two two-dimensional Gaussian distribution is adopted. Resulting formulae provide hints to select optimal Q value for given classification problems.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6358937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6358937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部泛化误差模型(L-GEM)为评估学习机器(如神经网络)的泛化能力提供了一个实用的框架。L-GEM的Q值控制未被评估样品的覆盖率。由于未见样本的非线性和真实未知关系及其泛化误差,不同的Q值产生不同的L-GEM值。本文采用一种基于遗传规划和人工数据集的进化方法来估计训练样本Q值与统计量之间的函数关系。在第一次实证研究中,我们采用了由两个二维高斯分布生成的简单训练样本。所得公式为给定分类问题选择最优Q值提供了提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical estimation of functional relationships between Q value of the L-GEM and training data using genetic programming
The Localized Generalization Error Model (L-GEM) provides a practical framework for evaluating generalization capability of a learning machine , e.g. neural network. The Q value of the L-GEM controls the coverage of unseen samples under evaluation. Owing to the nonlinear and real unknown relationship of unseen samples and their generalization error, different Q values yield different L-GEM values. In this paper, we adopt an evolutionary procedure based on genetic programming and artificial datasets to estimate functional relationship between Q values and statistics of training samples. In this first empirical study, a simple training samples generated from two two-dimensional Gaussian distribution is adopted. Resulting formulae provide hints to select optimal Q value for given classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信