低数据率测量中高机动目标的跟踪

Danyan Zhang, Xiaoyan Ma, Shuang-Long Quan, Hongya Wang, Dalong Xu
{"title":"低数据率测量中高机动目标的跟踪","authors":"Danyan Zhang, Xiaoyan Ma, Shuang-Long Quan, Hongya Wang, Dalong Xu","doi":"10.1109/IWS49314.2020.9360037","DOIUrl":null,"url":null,"abstract":"Under the condition of low data-rate measurement, it tends to mistrack or lose the target of high maneuvering targets by using the traditional single model tracking algorithm. This paper proposes a tracking method using Interacting Multiple Model (IMM) algorithm combined with Probabilistic Data Association (PDA) algorithm to solve the problem. Several measurement filtering thresholds are tuned to improve the accuracy of track association. Experiments show that this method achieves good tracking results.","PeriodicalId":301959,"journal":{"name":"2020 IEEE MTT-S International Wireless Symposium (IWS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking of High Maneuvering Targets in Low Data Rate Measurement\",\"authors\":\"Danyan Zhang, Xiaoyan Ma, Shuang-Long Quan, Hongya Wang, Dalong Xu\",\"doi\":\"10.1109/IWS49314.2020.9360037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the condition of low data-rate measurement, it tends to mistrack or lose the target of high maneuvering targets by using the traditional single model tracking algorithm. This paper proposes a tracking method using Interacting Multiple Model (IMM) algorithm combined with Probabilistic Data Association (PDA) algorithm to solve the problem. Several measurement filtering thresholds are tuned to improve the accuracy of track association. Experiments show that this method achieves good tracking results.\",\"PeriodicalId\":301959,\"journal\":{\"name\":\"2020 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWS49314.2020.9360037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS49314.2020.9360037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低数据率测量条件下,传统的单模型跟踪算法容易对高机动目标进行误跟踪或丢失目标。本文提出了一种基于交互多模型(IMM)算法与概率数据关联(PDA)算法相结合的跟踪方法。调整了多个测量滤波阈值,提高了航迹关联的精度。实验表明,该方法取得了良好的跟踪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking of High Maneuvering Targets in Low Data Rate Measurement
Under the condition of low data-rate measurement, it tends to mistrack or lose the target of high maneuvering targets by using the traditional single model tracking algorithm. This paper proposes a tracking method using Interacting Multiple Model (IMM) algorithm combined with Probabilistic Data Association (PDA) algorithm to solve the problem. Several measurement filtering thresholds are tuned to improve the accuracy of track association. Experiments show that this method achieves good tracking results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信