{"title":"SL(2)除以八元数","authors":"N. Hitchin","doi":"10.3318/PRIA.2018.118.04","DOIUrl":null,"url":null,"abstract":"We interpret an open orbit in a 32-dimensional representation space of Spin(9,1) x SL(2,R) as a substitute for the non-existent group of invertible 2x2 matrices over the octonions and study various natural homogeneous subspaces. The approach is via twistor geometry in eight dimensions.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SL(2) over the octonions\",\"authors\":\"N. Hitchin\",\"doi\":\"10.3318/PRIA.2018.118.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We interpret an open orbit in a 32-dimensional representation space of Spin(9,1) x SL(2,R) as a substitute for the non-existent group of invertible 2x2 matrices over the octonions and study various natural homogeneous subspaces. The approach is via twistor geometry in eight dimensions.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2018.118.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2018.118.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We interpret an open orbit in a 32-dimensional representation space of Spin(9,1) x SL(2,R) as a substitute for the non-existent group of invertible 2x2 matrices over the octonions and study various natural homogeneous subspaces. The approach is via twistor geometry in eight dimensions.