状态估计中扩展卡尔曼滤波器与最优非线性观测器的比较研究

Amir Valibeygi, I. M.HadiBalaghi, K. Vijayaraghavan
{"title":"状态估计中扩展卡尔曼滤波器与最优非线性观测器的比较研究","authors":"Amir Valibeygi, I. M.HadiBalaghi, K. Vijayaraghavan","doi":"10.23919/ACC.2017.7963764","DOIUrl":null,"url":null,"abstract":"A recently developed nonlinear H∞ observer and Extended Kalman Filter (EKF) offer two filters for state estimation in nonlinear systems. The Riccati equation that arises while developing the nonlinear H∞ observer is compared with the Riccati equation arising from the Extended Kalman Filter (EKF). Variations between the two Riccati equations translate into the differences in the performance of these alternative estimation methods. The H∞ filter offers faster convergence of the estimation covariance at large estimation errors during the transience of the filter. The Extended Kalman Filter, on the other hand, maintains higher levels of optimality at steady state at the expense of higher computational load. An LMI formulation for the H∞ filter is also presented that allows leveraging the bound on the nonlinearity to seek a stable filter for nonlinear systems.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A comparative study of Extended Kalman Filter and an optimal nonlinear observer for state estimation\",\"authors\":\"Amir Valibeygi, I. M.HadiBalaghi, K. Vijayaraghavan\",\"doi\":\"10.23919/ACC.2017.7963764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recently developed nonlinear H∞ observer and Extended Kalman Filter (EKF) offer two filters for state estimation in nonlinear systems. The Riccati equation that arises while developing the nonlinear H∞ observer is compared with the Riccati equation arising from the Extended Kalman Filter (EKF). Variations between the two Riccati equations translate into the differences in the performance of these alternative estimation methods. The H∞ filter offers faster convergence of the estimation covariance at large estimation errors during the transience of the filter. The Extended Kalman Filter, on the other hand, maintains higher levels of optimality at steady state at the expense of higher computational load. An LMI formulation for the H∞ filter is also presented that allows leveraging the bound on the nonlinearity to seek a stable filter for nonlinear systems.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近发展的一种非线性H∞观测器和扩展卡尔曼滤波器(EKF)为非线性系统的状态估计提供了两种滤波器。将开发非线性H∞观测器时产生的Riccati方程与扩展卡尔曼滤波器(EKF)产生的Riccati方程进行了比较。两个里卡蒂方程之间的差异转化为这些替代估计方法的性能差异。在滤波器瞬态期间,H∞滤波器在估计误差较大的情况下提供了更快的估计协方差收敛速度。另一方面,扩展卡尔曼滤波器以较高的计算负荷为代价,在稳态下保持较高的最优性水平。本文还提出了H∞滤波器的LMI公式,该公式允许利用非线性的界来寻求非线性系统的稳定滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of Extended Kalman Filter and an optimal nonlinear observer for state estimation
A recently developed nonlinear H∞ observer and Extended Kalman Filter (EKF) offer two filters for state estimation in nonlinear systems. The Riccati equation that arises while developing the nonlinear H∞ observer is compared with the Riccati equation arising from the Extended Kalman Filter (EKF). Variations between the two Riccati equations translate into the differences in the performance of these alternative estimation methods. The H∞ filter offers faster convergence of the estimation covariance at large estimation errors during the transience of the filter. The Extended Kalman Filter, on the other hand, maintains higher levels of optimality at steady state at the expense of higher computational load. An LMI formulation for the H∞ filter is also presented that allows leveraging the bound on the nonlinearity to seek a stable filter for nonlinear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信