广义小波神经模糊模型及其在时间序列预测中的应用

A. Banakar, M. Azeem
{"title":"广义小波神经模糊模型及其在时间序列预测中的应用","authors":"A. Banakar, M. Azeem","doi":"10.1109/ISEFS.2006.251139","DOIUrl":null,"url":null,"abstract":"The advantages of wavelets when used in neural networks and fuzzy are well known. The new notion is to combine wavelet networks and neuro-fuzzy models. In this paper two models namely summation wavelet neural network (SWNN) and multiplication wavelet neural network (MWNN) are proposed. These two generalized wavelet neural network (WNN) models are used in neuro-fuzzy model are tested by using time series prediction","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generalized Wavelet Neuro-Fuzzy Model and its Application in Time Series Forecasting\",\"authors\":\"A. Banakar, M. Azeem\",\"doi\":\"10.1109/ISEFS.2006.251139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advantages of wavelets when used in neural networks and fuzzy are well known. The new notion is to combine wavelet networks and neuro-fuzzy models. In this paper two models namely summation wavelet neural network (SWNN) and multiplication wavelet neural network (MWNN) are proposed. These two generalized wavelet neural network (WNN) models are used in neuro-fuzzy model are tested by using time series prediction\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

小波在神经网络和模糊网络中的优势是众所周知的。新的概念是将小波网络与神经模糊模型相结合。本文提出了求和小波神经网络和乘法小波神经网络两种模型。将这两种广义小波神经网络(WNN)模型应用于神经模糊模型,并通过时间序列预测进行了验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Wavelet Neuro-Fuzzy Model and its Application in Time Series Forecasting
The advantages of wavelets when used in neural networks and fuzzy are well known. The new notion is to combine wavelet networks and neuro-fuzzy models. In this paper two models namely summation wavelet neural network (SWNN) and multiplication wavelet neural network (MWNN) are proposed. These two generalized wavelet neural network (WNN) models are used in neuro-fuzzy model are tested by using time series prediction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信