基于CFD和机器学习工具的几何参数和壁面剪应力的脑动脉瘤破裂风险预测研究

A. Aranda, A. Valencia
{"title":"基于CFD和机器学习工具的几何参数和壁面剪应力的脑动脉瘤破裂风险预测研究","authors":"A. Aranda, A. Valencia","doi":"10.5121/MLAIJ.2018.5401","DOIUrl":null,"url":null,"abstract":"We modeled an SVM radial classification machine learning algorithm to determine the ruptured and unruptured risk of saccular cerebral aneurysms using 60 samples with 6 predictors as the gender, the age, the Womersley number, the Time-Averaged Wall Shear Stress (TAWSS), the Aspect Ratio (AR) and the bottleneck of the aneurysms, considering real cases of patients. We reconstructed computationally each geometry from an angiography image to realize a CFD simulations, where the TAWSS was computed by CFD analysis. A cross validation method was used in the training sample to validate the classification model, getting an accuracy of 92.86% in the test sample. This result may be used to help in medical decisions to avoid a complicated operation when the probability of rupture is low.","PeriodicalId":347528,"journal":{"name":"Machine Learning and Applications: An International Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"STUDY ON CEREBRAL ANEURYSMS: RUPTURE RISK PREDICTION USING GEOMETRICAL PARAMETERS AND WALL SHEAR STRESS WITH CFD AND MACHINE LEARNING TOOLS\",\"authors\":\"A. Aranda, A. Valencia\",\"doi\":\"10.5121/MLAIJ.2018.5401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We modeled an SVM radial classification machine learning algorithm to determine the ruptured and unruptured risk of saccular cerebral aneurysms using 60 samples with 6 predictors as the gender, the age, the Womersley number, the Time-Averaged Wall Shear Stress (TAWSS), the Aspect Ratio (AR) and the bottleneck of the aneurysms, considering real cases of patients. We reconstructed computationally each geometry from an angiography image to realize a CFD simulations, where the TAWSS was computed by CFD analysis. A cross validation method was used in the training sample to validate the classification model, getting an accuracy of 92.86% in the test sample. This result may be used to help in medical decisions to avoid a complicated operation when the probability of rupture is low.\",\"PeriodicalId\":347528,\"journal\":{\"name\":\"Machine Learning and Applications: An International Journal\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning and Applications: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/MLAIJ.2018.5401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Applications: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/MLAIJ.2018.5401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们采用SVM径向分类机器学习算法,以60个样本为研究对象,以性别、年龄、Womersley数、时间平均壁剪应力(TAWSS)、宽高比(AR)和动脉瘤瓶颈为6个预测因子,结合患者的实际情况,对脑囊性动脉瘤的破裂和未破裂风险进行建模。我们从血管造影图像中计算重建每个几何形状以实现CFD模拟,其中TAWSS通过CFD分析计算。在训练样本中采用交叉验证方法对分类模型进行验证,在测试样本中准确率达到92.86%。该结果可用于帮助医疗决策,以避免在破裂概率较低时进行复杂的手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDY ON CEREBRAL ANEURYSMS: RUPTURE RISK PREDICTION USING GEOMETRICAL PARAMETERS AND WALL SHEAR STRESS WITH CFD AND MACHINE LEARNING TOOLS
We modeled an SVM radial classification machine learning algorithm to determine the ruptured and unruptured risk of saccular cerebral aneurysms using 60 samples with 6 predictors as the gender, the age, the Womersley number, the Time-Averaged Wall Shear Stress (TAWSS), the Aspect Ratio (AR) and the bottleneck of the aneurysms, considering real cases of patients. We reconstructed computationally each geometry from an angiography image to realize a CFD simulations, where the TAWSS was computed by CFD analysis. A cross validation method was used in the training sample to validate the classification model, getting an accuracy of 92.86% in the test sample. This result may be used to help in medical decisions to avoid a complicated operation when the probability of rupture is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信