带期望传播的狄利克雷分布的贝叶斯估计

Zhanyu Ma
{"title":"带期望传播的狄利克雷分布的贝叶斯估计","authors":"Zhanyu Ma","doi":"10.5281/ZENODO.52389","DOIUrl":null,"url":null,"abstract":"As a member of the exponential family, the Dirichlet distribution has its conjugate prior. However, since the posterior distribution is difficult to use in practical problems, Bayesian estimation of the Dirichlet distribution, in general, is not analytically tractable. To derive practically easily used prior and posterior distributions, some approximations are required to approximate both the prior and the posterior distributions so that the conjugate match between the prior and posterior distributions holds and the obtained posterior distribution is easy to be employed. To this end, we approximate the distribution of the parameters in the Dirichlet distribution by a multivariate Gaussian distribution, based on the expectation propagation (EP) framework. The EP-based method captures the correlations among the parameters and provides an easily used prior/posterior distribution. Compared to recently proposed Bayesian estimation based on the variation inference (VI) framework, the EP-based method performs better with a smaller amount of observed data and is more stable.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Bayesian estimation of the Dirichlet distribution with expectation propagation\",\"authors\":\"Zhanyu Ma\",\"doi\":\"10.5281/ZENODO.52389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a member of the exponential family, the Dirichlet distribution has its conjugate prior. However, since the posterior distribution is difficult to use in practical problems, Bayesian estimation of the Dirichlet distribution, in general, is not analytically tractable. To derive practically easily used prior and posterior distributions, some approximations are required to approximate both the prior and the posterior distributions so that the conjugate match between the prior and posterior distributions holds and the obtained posterior distribution is easy to be employed. To this end, we approximate the distribution of the parameters in the Dirichlet distribution by a multivariate Gaussian distribution, based on the expectation propagation (EP) framework. The EP-based method captures the correlations among the parameters and provides an easily used prior/posterior distribution. Compared to recently proposed Bayesian estimation based on the variation inference (VI) framework, the EP-based method performs better with a smaller amount of observed data and is more stable.\",\"PeriodicalId\":201182,\"journal\":{\"name\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.52389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.52389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

作为指数族的一员,狄利克雷分布有其共轭先验。然而,由于后验分布难以在实际问题中使用,因此Dirichlet分布的贝叶斯估计通常无法解析处理。为了得到实际容易使用的先验分布和后验分布,需要对先验分布和后验分布都进行近似,使先验分布和后验分布之间的共轭匹配成立,得到的后验分布便于使用。为此,我们基于期望传播(EP)框架,用多元高斯分布近似Dirichlet分布中参数的分布。基于ep的方法捕获参数之间的相关性,并提供易于使用的先验/后验分布。与最近提出的基于变异推理(VI)框架的贝叶斯估计相比,基于ep的方法在观测数据量较小的情况下性能更好,并且更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian estimation of the Dirichlet distribution with expectation propagation
As a member of the exponential family, the Dirichlet distribution has its conjugate prior. However, since the posterior distribution is difficult to use in practical problems, Bayesian estimation of the Dirichlet distribution, in general, is not analytically tractable. To derive practically easily used prior and posterior distributions, some approximations are required to approximate both the prior and the posterior distributions so that the conjugate match between the prior and posterior distributions holds and the obtained posterior distribution is easy to be employed. To this end, we approximate the distribution of the parameters in the Dirichlet distribution by a multivariate Gaussian distribution, based on the expectation propagation (EP) framework. The EP-based method captures the correlations among the parameters and provides an easily used prior/posterior distribution. Compared to recently proposed Bayesian estimation based on the variation inference (VI) framework, the EP-based method performs better with a smaller amount of observed data and is more stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信