{"title":"基于局部观测的元胞自动机识别的进化方法","authors":"W. Bołt, J. Baetens, B. Baets","doi":"10.1109/CEC.2015.7257258","DOIUrl":null,"url":null,"abstract":"In this paper we consider the identification problem of Cellular Automata (CAs). The problem is defined and solved in the context of partial observations with time gaps of unknown length, i.e. pre-recorded, partial configurations of the system at certain, unknown time steps. A solution method based on a modified variant of a Genetic Algorithm (GA) is proposed and illustrated with brief experimental results.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An evolutionary approach to the identification of Cellular Automata based on partial observations\",\"authors\":\"W. Bołt, J. Baetens, B. Baets\",\"doi\":\"10.1109/CEC.2015.7257258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the identification problem of Cellular Automata (CAs). The problem is defined and solved in the context of partial observations with time gaps of unknown length, i.e. pre-recorded, partial configurations of the system at certain, unknown time steps. A solution method based on a modified variant of a Genetic Algorithm (GA) is proposed and illustrated with brief experimental results.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An evolutionary approach to the identification of Cellular Automata based on partial observations
In this paper we consider the identification problem of Cellular Automata (CAs). The problem is defined and solved in the context of partial observations with time gaps of unknown length, i.e. pre-recorded, partial configurations of the system at certain, unknown time steps. A solution method based on a modified variant of a Genetic Algorithm (GA) is proposed and illustrated with brief experimental results.