基于小波和POD的模型阶约简方法的应用与比较

H. Florez, M. Argáez
{"title":"基于小波和POD的模型阶约简方法的应用与比较","authors":"H. Florez, M. Argáez","doi":"10.1109/NAFIPS.2016.7851593","DOIUrl":null,"url":null,"abstract":"We present a wavelet-based model-order reduction method (MOR) that provides an alternative subspace when Proper Orthogonal Decomposition (POD) is not a choice. We thus compare the wavelet- and POD-based approaches for reducing high-dimensional nonlinear transient and steady-state continuation problems. We also propose a line-search regularized Petrov-Galerkin (PG) Gauss-Newton (GN) algorithm that includes a regularization procedure and a globalization strategy. Numerical results included herein indicate that wavelet-based method is competitive with POD for compression ratios below 25% while POD achieves up to 90%. Full-order-model (FOM) results demonstrate that the proposed PGGN algorithm outperforms the standard GN method.","PeriodicalId":208265,"journal":{"name":"2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Applications and comparison of model-order reduction methods based on wavelets and POD\",\"authors\":\"H. Florez, M. Argáez\",\"doi\":\"10.1109/NAFIPS.2016.7851593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a wavelet-based model-order reduction method (MOR) that provides an alternative subspace when Proper Orthogonal Decomposition (POD) is not a choice. We thus compare the wavelet- and POD-based approaches for reducing high-dimensional nonlinear transient and steady-state continuation problems. We also propose a line-search regularized Petrov-Galerkin (PG) Gauss-Newton (GN) algorithm that includes a regularization procedure and a globalization strategy. Numerical results included herein indicate that wavelet-based method is competitive with POD for compression ratios below 25% while POD achieves up to 90%. Full-order-model (FOM) results demonstrate that the proposed PGGN algorithm outperforms the standard GN method.\",\"PeriodicalId\":208265,\"journal\":{\"name\":\"2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2016.7851593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2016.7851593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于小波的模型阶约简方法(MOR),该方法在固有正交分解(POD)不可选时提供了一种替代子空间。因此,我们比较了小波和基于pod的方法来减少高维非线性瞬态和稳态延拓问题。我们还提出了一种包含正则化过程和全球化策略的线搜索正则化Petrov-Galerkin (PG)高斯-牛顿(GN)算法。数值结果表明,在压缩比低于25%的情况下,基于小波的方法可以与POD方法相竞争,而POD方法的压缩比可达90%。全阶模型(FOM)结果表明,本文提出的PGGN算法优于标准GN方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications and comparison of model-order reduction methods based on wavelets and POD
We present a wavelet-based model-order reduction method (MOR) that provides an alternative subspace when Proper Orthogonal Decomposition (POD) is not a choice. We thus compare the wavelet- and POD-based approaches for reducing high-dimensional nonlinear transient and steady-state continuation problems. We also propose a line-search regularized Petrov-Galerkin (PG) Gauss-Newton (GN) algorithm that includes a regularization procedure and a globalization strategy. Numerical results included herein indicate that wavelet-based method is competitive with POD for compression ratios below 25% while POD achieves up to 90%. Full-order-model (FOM) results demonstrate that the proposed PGGN algorithm outperforms the standard GN method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信