{"title":"利用NRI-TL超材料制备任意长度零相衬底集成共轴线","authors":"Abdul Quddious, S. Nikolaou, M. Antoniades","doi":"10.1109/IWAT.2017.7915377","DOIUrl":null,"url":null,"abstract":"Arbitrary-length zero-degree phase-shifting lines are presented at X-band that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials implemented in substrate integrated coaxial line (SICL) technology. Initially, a host substrate integrated coaxial line was loaded with a series interdigital capacitor and shunt printed inductors to form a single NRI-TL metamaterial unit cell. Subsequently, multi-stage NRI-TL metamaterial lines were realized by cascading multiple NRI-TL metamaterial unit cells. The performance of the metamaterial lines is analyzed based on their reflection loss, insertion loss, radiation loss and insertion phase for different lengths of line ranging from λ/5 to λ at 10 GHz. It is shown that the radiation loss remains below 0.003% of the total losses for all presented lengths of metamaterial lines, while exhibiting good reflection and transmission characteristics. These results indicate that the proposed zero-phase NRI-TL metamaterial lines in SICL technology are well suited for very low-loss guided-wave applications.","PeriodicalId":289886,"journal":{"name":"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrary length zero-phase substrate integrated coaxial lines using NRI-TL metamaterials\",\"authors\":\"Abdul Quddious, S. Nikolaou, M. Antoniades\",\"doi\":\"10.1109/IWAT.2017.7915377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arbitrary-length zero-degree phase-shifting lines are presented at X-band that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials implemented in substrate integrated coaxial line (SICL) technology. Initially, a host substrate integrated coaxial line was loaded with a series interdigital capacitor and shunt printed inductors to form a single NRI-TL metamaterial unit cell. Subsequently, multi-stage NRI-TL metamaterial lines were realized by cascading multiple NRI-TL metamaterial unit cells. The performance of the metamaterial lines is analyzed based on their reflection loss, insertion loss, radiation loss and insertion phase for different lengths of line ranging from λ/5 to λ at 10 GHz. It is shown that the radiation loss remains below 0.003% of the total losses for all presented lengths of metamaterial lines, while exhibiting good reflection and transmission characteristics. These results indicate that the proposed zero-phase NRI-TL metamaterial lines in SICL technology are well suited for very low-loss guided-wave applications.\",\"PeriodicalId\":289886,\"journal\":{\"name\":\"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2017.7915377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2017.7915377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arbitrary length zero-phase substrate integrated coaxial lines using NRI-TL metamaterials
Arbitrary-length zero-degree phase-shifting lines are presented at X-band that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials implemented in substrate integrated coaxial line (SICL) technology. Initially, a host substrate integrated coaxial line was loaded with a series interdigital capacitor and shunt printed inductors to form a single NRI-TL metamaterial unit cell. Subsequently, multi-stage NRI-TL metamaterial lines were realized by cascading multiple NRI-TL metamaterial unit cells. The performance of the metamaterial lines is analyzed based on their reflection loss, insertion loss, radiation loss and insertion phase for different lengths of line ranging from λ/5 to λ at 10 GHz. It is shown that the radiation loss remains below 0.003% of the total losses for all presented lengths of metamaterial lines, while exhibiting good reflection and transmission characteristics. These results indicate that the proposed zero-phase NRI-TL metamaterial lines in SICL technology are well suited for very low-loss guided-wave applications.