基于最小二乘离散傅里叶变换的部分k空间MRI图像重建方法

Kalim Tobaji, Laura Matar, A. Abche, E. Karam
{"title":"基于最小二乘离散傅里叶变换的部分k空间MRI图像重建方法","authors":"Kalim Tobaji, Laura Matar, A. Abche, E. Karam","doi":"10.1109/SPA.2015.7365111","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Imaging (MRI) provides important and valuable information (images) about the organs structures and soft tissues non-invasively. In this work, a reconstruction approach using partial k-space, the “Optimized Discrete Fourier Transform” (ODFT), is introduced. The developed approach decomposes the 2-D Fourier Transform (FT) into two steps of 1-D DFT. The corresponding elements along each row or column are estimated using an optimization technique, namely, the complex conjugate gradient. It is proposed to be implemented in conjunction with other techniques to obtain an optimum image that is closer to the original image. The algorithm is evaluated visually and quantitatively using the Performance Test and the Mean Square Error as similarity measures. Also, its effectiveness is compared with different MRI reconstruction techniques such as the Projection onto Convex Set technique, the Conjugate Synthesis technique and the Zero filling technique. The results illustrate that the proposed technique outperforms the conventional MRI image reconstruction techniques.","PeriodicalId":423880,"journal":{"name":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI image reconstruction approach for partial K-space based on the Discrete Fourier Transform in the least square sense\",\"authors\":\"Kalim Tobaji, Laura Matar, A. Abche, E. Karam\",\"doi\":\"10.1109/SPA.2015.7365111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Resonance Imaging (MRI) provides important and valuable information (images) about the organs structures and soft tissues non-invasively. In this work, a reconstruction approach using partial k-space, the “Optimized Discrete Fourier Transform” (ODFT), is introduced. The developed approach decomposes the 2-D Fourier Transform (FT) into two steps of 1-D DFT. The corresponding elements along each row or column are estimated using an optimization technique, namely, the complex conjugate gradient. It is proposed to be implemented in conjunction with other techniques to obtain an optimum image that is closer to the original image. The algorithm is evaluated visually and quantitatively using the Performance Test and the Mean Square Error as similarity measures. Also, its effectiveness is compared with different MRI reconstruction techniques such as the Projection onto Convex Set technique, the Conjugate Synthesis technique and the Zero filling technique. The results illustrate that the proposed technique outperforms the conventional MRI image reconstruction techniques.\",\"PeriodicalId\":423880,\"journal\":{\"name\":\"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPA.2015.7365111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPA.2015.7365111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像(MRI)是非侵入性地提供有关器官结构和软组织的重要和有价值的信息(图像)。在这项工作中,介绍了一种使用偏k空间的重建方法,即“优化离散傅立叶变换”(ODFT)。该方法将二维傅里叶变换(FT)分解为二维DFT的两步。利用优化技术,即复共轭梯度,估计每一行或每一列的相应元素。建议与其他技术一起实现,以获得更接近原始图像的最佳图像。该算法使用性能测试和均方误差作为相似性度量进行视觉和定量评估。并对其与凸集投影技术、共轭合成技术和零填充技术等不同的MRI重建技术的有效性进行了比较。结果表明,该方法优于传统的MRI图像重建技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI image reconstruction approach for partial K-space based on the Discrete Fourier Transform in the least square sense
Magnetic Resonance Imaging (MRI) provides important and valuable information (images) about the organs structures and soft tissues non-invasively. In this work, a reconstruction approach using partial k-space, the “Optimized Discrete Fourier Transform” (ODFT), is introduced. The developed approach decomposes the 2-D Fourier Transform (FT) into two steps of 1-D DFT. The corresponding elements along each row or column are estimated using an optimization technique, namely, the complex conjugate gradient. It is proposed to be implemented in conjunction with other techniques to obtain an optimum image that is closer to the original image. The algorithm is evaluated visually and quantitatively using the Performance Test and the Mean Square Error as similarity measures. Also, its effectiveness is compared with different MRI reconstruction techniques such as the Projection onto Convex Set technique, the Conjugate Synthesis technique and the Zero filling technique. The results illustrate that the proposed technique outperforms the conventional MRI image reconstruction techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信