P. Honeine, Cédric Richard, Mehdi Essoloh, H. Snoussi
{"title":"传感器网络中的定位。矩阵回归方法","authors":"P. Honeine, Cédric Richard, Mehdi Essoloh, H. Snoussi","doi":"10.1109/SAM.2008.4606873","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach to sensor localization problems, based on recent developments in machine leaning. The main idea behind it is to consider a matrix regression method between the ranging matrix and the matrix of inner products between positions of sensors, in order to complete the latter. Once we have learnt this regression from information between sensors of known positions (beacons), we apply it to sensors of unknown positions. Retrieving the estimated positions of the latter can be done by solving a linear system. We propose a distributed algorithm, where each sensor positions itself with information available from its nearby beacons. The proposed method is validated by experimentations.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Localization in sensor networks - A matrix regression approach\",\"authors\":\"P. Honeine, Cédric Richard, Mehdi Essoloh, H. Snoussi\",\"doi\":\"10.1109/SAM.2008.4606873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach to sensor localization problems, based on recent developments in machine leaning. The main idea behind it is to consider a matrix regression method between the ranging matrix and the matrix of inner products between positions of sensors, in order to complete the latter. Once we have learnt this regression from information between sensors of known positions (beacons), we apply it to sensors of unknown positions. Retrieving the estimated positions of the latter can be done by solving a linear system. We propose a distributed algorithm, where each sensor positions itself with information available from its nearby beacons. The proposed method is validated by experimentations.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localization in sensor networks - A matrix regression approach
In this paper, we propose a new approach to sensor localization problems, based on recent developments in machine leaning. The main idea behind it is to consider a matrix regression method between the ranging matrix and the matrix of inner products between positions of sensors, in order to complete the latter. Once we have learnt this regression from information between sensors of known positions (beacons), we apply it to sensors of unknown positions. Retrieving the estimated positions of the latter can be done by solving a linear system. We propose a distributed algorithm, where each sensor positions itself with information available from its nearby beacons. The proposed method is validated by experimentations.