基于块的自回归语音参数估计的层次聚类和鲁棒识别

Ruofei Chen, C. Chan
{"title":"基于块的自回归语音参数估计的层次聚类和鲁棒识别","authors":"Ruofei Chen, C. Chan","doi":"10.1109/ISCSLP.2012.6423482","DOIUrl":null,"url":null,"abstract":"Given accurate system parameters like state transition matrix F and corruption mapping matrix H, clean speech autoregressive (AR) parameters can be effectively estimated from a series of noisy observations with Kalman filtering. In this paper, we address several fundamental issues to improve the linear dynamical system (LDS) based AR parameter estimation. A hierarchical time series clustering scheme is devised to truly group speech blocks with similar trajectories and corruption types. In addition, a correlated robust identification scheme using a posteriori signal-to-noise (SNR) mask is proposed to improve the identification accuracy. The effectiveness of the proposed clustering and identification scheme is evaluated in terms of spectral distortion between the Kalman estimates and the true clean speech parameters. Significant improvement is observed over the original matrix quantization (MQ) based approach. The proposed scheme is also successfully applied in a model-based speech enhancement application, and is expected to be effective in various codebook driven speech applications for robust identification purpose.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical clustering and robust identification for block-based autoregressive speech parameter estimation\",\"authors\":\"Ruofei Chen, C. Chan\",\"doi\":\"10.1109/ISCSLP.2012.6423482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given accurate system parameters like state transition matrix F and corruption mapping matrix H, clean speech autoregressive (AR) parameters can be effectively estimated from a series of noisy observations with Kalman filtering. In this paper, we address several fundamental issues to improve the linear dynamical system (LDS) based AR parameter estimation. A hierarchical time series clustering scheme is devised to truly group speech blocks with similar trajectories and corruption types. In addition, a correlated robust identification scheme using a posteriori signal-to-noise (SNR) mask is proposed to improve the identification accuracy. The effectiveness of the proposed clustering and identification scheme is evaluated in terms of spectral distortion between the Kalman estimates and the true clean speech parameters. Significant improvement is observed over the original matrix quantization (MQ) based approach. The proposed scheme is also successfully applied in a model-based speech enhancement application, and is expected to be effective in various codebook driven speech applications for robust identification purpose.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定准确的系统参数,如状态转移矩阵F和损坏映射矩阵H,可以通过卡尔曼滤波从一系列噪声观测中有效地估计干净语音自回归(AR)参数。在本文中,我们解决了几个基本问题,以改进线性动力系统(LDS)的AR参数估计。设计了一种分层时间序列聚类方案,对具有相似轨迹和腐败类型的语音块进行真正的分组。此外,为了提高识别精度,提出了一种基于后验信噪比掩模的相关鲁棒识别方案。根据卡尔曼估计和真实干净语音参数之间的频谱失真来评估所提出的聚类和识别方案的有效性。与原始的基于矩阵量化(MQ)的方法相比,可以观察到显著的改进。该方案还成功地应用于基于模型的语音增强应用,并有望在各种码本驱动的语音应用中有效地实现鲁棒识别目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical clustering and robust identification for block-based autoregressive speech parameter estimation
Given accurate system parameters like state transition matrix F and corruption mapping matrix H, clean speech autoregressive (AR) parameters can be effectively estimated from a series of noisy observations with Kalman filtering. In this paper, we address several fundamental issues to improve the linear dynamical system (LDS) based AR parameter estimation. A hierarchical time series clustering scheme is devised to truly group speech blocks with similar trajectories and corruption types. In addition, a correlated robust identification scheme using a posteriori signal-to-noise (SNR) mask is proposed to improve the identification accuracy. The effectiveness of the proposed clustering and identification scheme is evaluated in terms of spectral distortion between the Kalman estimates and the true clean speech parameters. Significant improvement is observed over the original matrix quantization (MQ) based approach. The proposed scheme is also successfully applied in a model-based speech enhancement application, and is expected to be effective in various codebook driven speech applications for robust identification purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信