基于hmm的历史文献手写识别的图相似特征

Andreas Fischer, Kaspar Riesen, H. Bunke
{"title":"基于hmm的历史文献手写识别的图相似特征","authors":"Andreas Fischer, Kaspar Riesen, H. Bunke","doi":"10.1109/ICFHR.2010.47","DOIUrl":null,"url":null,"abstract":"Automatic transcription of historical documents is vital for the creation of digital libraries. In this paper we propose graph similarity features as a novel descriptor for handwriting recognition in historical documents based on Hidden Markov Models. Using a structural graph-based representation of text images, a sequence of graph similarity features is extracted by means of dissimilarity embedding with respect to a set of character prototypes. On the medieval Parzival data set it is demonstrated that the proposed structural descriptor significantly outperforms two well-known statistical reference descriptors for single word recognition.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"544 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Graph Similarity Features for HMM-Based Handwriting Recognition in Historical Documents\",\"authors\":\"Andreas Fischer, Kaspar Riesen, H. Bunke\",\"doi\":\"10.1109/ICFHR.2010.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic transcription of historical documents is vital for the creation of digital libraries. In this paper we propose graph similarity features as a novel descriptor for handwriting recognition in historical documents based on Hidden Markov Models. Using a structural graph-based representation of text images, a sequence of graph similarity features is extracted by means of dissimilarity embedding with respect to a set of character prototypes. On the medieval Parzival data set it is demonstrated that the proposed structural descriptor significantly outperforms two well-known statistical reference descriptors for single word recognition.\",\"PeriodicalId\":335044,\"journal\":{\"name\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"544 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2010.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

历史文献的自动转录对于创建数字图书馆至关重要。本文提出了一种新的基于隐马尔可夫模型的历史文献手写识别描述符——图相似度特征。利用基于结构图的文本图像表示,通过对一组字符原型的不相似度嵌入来提取一系列图的相似度特征。在中世纪Parzival数据集上,我们证明了所提出的结构描述符在单字识别方面明显优于两种知名的统计参考描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Similarity Features for HMM-Based Handwriting Recognition in Historical Documents
Automatic transcription of historical documents is vital for the creation of digital libraries. In this paper we propose graph similarity features as a novel descriptor for handwriting recognition in historical documents based on Hidden Markov Models. Using a structural graph-based representation of text images, a sequence of graph similarity features is extracted by means of dissimilarity embedding with respect to a set of character prototypes. On the medieval Parzival data set it is demonstrated that the proposed structural descriptor significantly outperforms two well-known statistical reference descriptors for single word recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信