Hovi Sohibul Wafa Hovi, Asep Id Hadiana, Fajri Rakhmat Umbara
{"title":"Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM)","authors":"Hovi Sohibul Wafa Hovi, Asep Id Hadiana, Fajri Rakhmat Umbara","doi":"10.36423/index.v4i1.895","DOIUrl":null,"url":null,"abstract":"Diabetes Mellitus (DM) atau lebih dikenal dengan sebutan penyakit kencing manis adalah penyakit kronis yang disebabkan oleh gagalnya organ pankreas memproduksi jumlah hormon insulin secara memadai sehingga menyebabkan peningkatan kadar glukosa dalam darah. Diabetes Mellitus merupakan penyakit yang berbahaya, banyak diberbagai negara terkena penyakit diabetes termasuk di Indonesia. Penyebab utama diabetes masih belum diketahui, namun banyak yang percaya bahwa faktor genetika dan gaya hidup dapat memainkan peran utama pada diabetes. Para peneliti di bidang bioinformatika telah berusaha untuk mengatasi penyakit ini dan membuat sistem untuk membantu dalam prediksi diabetes. Dari berbagai penelitian yang ada, banyak menggunakan metode seperti C4.5, KNN, Naïve Bayes, serta SVM Linier dalam membangun sistem, tapi metode SVM Radial Basis Function (RBF) jarang digunakan dikarenakan hasil akurasi yang didapat tidak cukup untuk digunakan pada sistem prediksi diabetes. Pada penelitian ini menjawab gap tersebut bahwa dengan menggunakan metode algoritma SVM Radial Basis Function (RBF) dapat menghasilkan akurasi yang tinggi dengan mencapai sebesar 91%. Pengujian akurasi yang dilakukan menggunakan Confusion Matrix dan peramalan Mean Square Error dengan kfold kelipatan 10. Penelitian ini bertujuan untuk menentukan apakah penderita/pasien dapat terkena penyakit diabetes atau tidak dengan menerapkan teknik data mining dan klasifikasi menggunakan algoritma SVM Radial Basis Function berbasis Forward Selection.","PeriodicalId":355867,"journal":{"name":"Informatics and Digital Expert (INDEX)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics and Digital Expert (INDEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36423/index.v4i1.895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM)
Diabetes Mellitus (DM) atau lebih dikenal dengan sebutan penyakit kencing manis adalah penyakit kronis yang disebabkan oleh gagalnya organ pankreas memproduksi jumlah hormon insulin secara memadai sehingga menyebabkan peningkatan kadar glukosa dalam darah. Diabetes Mellitus merupakan penyakit yang berbahaya, banyak diberbagai negara terkena penyakit diabetes termasuk di Indonesia. Penyebab utama diabetes masih belum diketahui, namun banyak yang percaya bahwa faktor genetika dan gaya hidup dapat memainkan peran utama pada diabetes. Para peneliti di bidang bioinformatika telah berusaha untuk mengatasi penyakit ini dan membuat sistem untuk membantu dalam prediksi diabetes. Dari berbagai penelitian yang ada, banyak menggunakan metode seperti C4.5, KNN, Naïve Bayes, serta SVM Linier dalam membangun sistem, tapi metode SVM Radial Basis Function (RBF) jarang digunakan dikarenakan hasil akurasi yang didapat tidak cukup untuk digunakan pada sistem prediksi diabetes. Pada penelitian ini menjawab gap tersebut bahwa dengan menggunakan metode algoritma SVM Radial Basis Function (RBF) dapat menghasilkan akurasi yang tinggi dengan mencapai sebesar 91%. Pengujian akurasi yang dilakukan menggunakan Confusion Matrix dan peramalan Mean Square Error dengan kfold kelipatan 10. Penelitian ini bertujuan untuk menentukan apakah penderita/pasien dapat terkena penyakit diabetes atau tidak dengan menerapkan teknik data mining dan klasifikasi menggunakan algoritma SVM Radial Basis Function berbasis Forward Selection.