非侵入式负荷监测的基本限制

Roy Dong, L. Ratliff, Henrik Ohlsson, S. Sastry
{"title":"非侵入式负荷监测的基本限制","authors":"Roy Dong, L. Ratliff, Henrik Ohlsson, S. Sastry","doi":"10.1145/2566468.2566471","DOIUrl":null,"url":null,"abstract":"Provided an arbitrary nonintrusive load monitoring (NILM) algorithm, we seek bounds on the probability of distinguishing between scenarios, given an aggregate power consumption signal. We introduce a framework for studying a general NILM algorithm, and analyze the theory in the general case. Then, we specialize to the case where the error is Gaussian. In both cases, we are able to derive upper bounds on the probability of distinguishing scenarios. Finally, we apply the results to real data to derive bounds on the probability of distinguishing between scenarios as a function of the measurement noise, the sampling rate, and the device usage.","PeriodicalId":339979,"journal":{"name":"Proceedings of the 3rd international conference on High confidence networked systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Fundamental limits of nonintrusive load monitoring\",\"authors\":\"Roy Dong, L. Ratliff, Henrik Ohlsson, S. Sastry\",\"doi\":\"10.1145/2566468.2566471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Provided an arbitrary nonintrusive load monitoring (NILM) algorithm, we seek bounds on the probability of distinguishing between scenarios, given an aggregate power consumption signal. We introduce a framework for studying a general NILM algorithm, and analyze the theory in the general case. Then, we specialize to the case where the error is Gaussian. In both cases, we are able to derive upper bounds on the probability of distinguishing scenarios. Finally, we apply the results to real data to derive bounds on the probability of distinguishing between scenarios as a function of the measurement noise, the sampling rate, and the device usage.\",\"PeriodicalId\":339979,\"journal\":{\"name\":\"Proceedings of the 3rd international conference on High confidence networked systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd international conference on High confidence networked systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2566468.2566471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd international conference on High confidence networked systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2566468.2566471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提供一个任意的非侵入式负载监控(NILM)算法,我们寻求在给定总功耗信号的情况下区分场景的概率界限。我们介绍了一种研究一般NILM算法的框架,并在一般情况下对理论进行了分析。然后,我们专门研究误差为高斯的情况。在这两种情况下,我们都能够推导出区分情景的概率的上界。最后,我们将结果应用于实际数据,以推导出作为测量噪声、采样率和设备使用函数的场景之间区分概率的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental limits of nonintrusive load monitoring
Provided an arbitrary nonintrusive load monitoring (NILM) algorithm, we seek bounds on the probability of distinguishing between scenarios, given an aggregate power consumption signal. We introduce a framework for studying a general NILM algorithm, and analyze the theory in the general case. Then, we specialize to the case where the error is Gaussian. In both cases, we are able to derive upper bounds on the probability of distinguishing scenarios. Finally, we apply the results to real data to derive bounds on the probability of distinguishing between scenarios as a function of the measurement noise, the sampling rate, and the device usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信