基于独立递归神经网络的滚珠轴承剩余使用寿命预测

R. Kuo, C. Li
{"title":"基于独立递归神经网络的滚珠轴承剩余使用寿命预测","authors":"R. Kuo, C. Li","doi":"10.1145/3396743.3396765","DOIUrl":null,"url":null,"abstract":"Planning maintenance of facilities is an important role for production line. From preventive maintenance to predictive maintenance, the main purpose is cost down by reducing the chance of the unexpected shot down. Thus, this study intends to apply independent recurrent neural network (IndRNN), which is a kind of deep learning technique, and apply it to predict remaining useful life for the ball bearings using vibration signals. The result of the proposed method is compared with original RNN. The experimental results indicate that IndRNN is able to perform better than the other method in terms of score.","PeriodicalId":431443,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering","volume":"795 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Remaining Useful Life of Ball Bearing Using an Independent Recurrent Neural Network\",\"authors\":\"R. Kuo, C. Li\",\"doi\":\"10.1145/3396743.3396765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning maintenance of facilities is an important role for production line. From preventive maintenance to predictive maintenance, the main purpose is cost down by reducing the chance of the unexpected shot down. Thus, this study intends to apply independent recurrent neural network (IndRNN), which is a kind of deep learning technique, and apply it to predict remaining useful life for the ball bearings using vibration signals. The result of the proposed method is compared with original RNN. The experimental results indicate that IndRNN is able to perform better than the other method in terms of score.\",\"PeriodicalId\":431443,\"journal\":{\"name\":\"Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering\",\"volume\":\"795 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3396743.3396765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396743.3396765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设施的规划维护是生产线的重要工作。从预防性维护到预测性维护,主要目的是通过减少意外击落的机会来降低成本。因此,本研究拟将独立递归神经网络(IndRNN)作为一种深度学习技术,应用于利用振动信号预测滚珠轴承剩余使用寿命。将该方法的结果与原始RNN进行了比较。实验结果表明,IndRNN在得分方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Remaining Useful Life of Ball Bearing Using an Independent Recurrent Neural Network
Planning maintenance of facilities is an important role for production line. From preventive maintenance to predictive maintenance, the main purpose is cost down by reducing the chance of the unexpected shot down. Thus, this study intends to apply independent recurrent neural network (IndRNN), which is a kind of deep learning technique, and apply it to predict remaining useful life for the ball bearings using vibration signals. The result of the proposed method is compared with original RNN. The experimental results indicate that IndRNN is able to perform better than the other method in terms of score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信