基于模糊规则的平面图语义分割系统

Hugo Leon-Garza, H. Hagras, A. Peña-Ríos, A. Conway, G. Owusu
{"title":"基于模糊规则的平面图语义分割系统","authors":"Hugo Leon-Garza, H. Hagras, A. Peña-Ríos, A. Conway, G. Owusu","doi":"10.1109/FUZZ45933.2021.9494427","DOIUrl":null,"url":null,"abstract":"Semantic segmentation models help with the extraction of information from images. Currently, Convolutional Neural Networks (CNNs) are the state of the art for performing such tasks but the interpretability in their predictions is low. Previous work had proposed the use of Fuzzy Logic Rule-based systems (FRBS) as an explainable AI classifier of pixels for segmentation of images. In this paper, we extend that approach by using the similarity between image patches as context information for our model. The type-1 FRBS that uses the proposed set of context information features reaches an average Intersection over Union (IoU) value 3.51% higher than the type-1 FRBS using colour information. The difference in average IoU is significant due to the importance of colour in the testing images and the already high IoU value from the type-1 FRBS using colour.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Fuzzy Rule-based System using a Patch-based Approach for Semantic Segmentation in Floor Plans\",\"authors\":\"Hugo Leon-Garza, H. Hagras, A. Peña-Ríos, A. Conway, G. Owusu\",\"doi\":\"10.1109/FUZZ45933.2021.9494427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation models help with the extraction of information from images. Currently, Convolutional Neural Networks (CNNs) are the state of the art for performing such tasks but the interpretability in their predictions is low. Previous work had proposed the use of Fuzzy Logic Rule-based systems (FRBS) as an explainable AI classifier of pixels for segmentation of images. In this paper, we extend that approach by using the similarity between image patches as context information for our model. The type-1 FRBS that uses the proposed set of context information features reaches an average Intersection over Union (IoU) value 3.51% higher than the type-1 FRBS using colour information. The difference in average IoU is significant due to the importance of colour in the testing images and the already high IoU value from the type-1 FRBS using colour.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

语义分割模型有助于从图像中提取信息。目前,卷积神经网络(cnn)是执行此类任务的最新技术,但其预测的可解释性很低。以前的工作已经提出使用基于模糊逻辑规则的系统(FRBS)作为图像分割像素的可解释人工智能分类器。在本文中,我们通过使用图像补丁之间的相似性作为我们模型的上下文信息来扩展该方法。使用所提出的上下文信息特征集的1型FRBS达到的平均IoU值比使用颜色信息的1型FRBS高3.51%。由于测试图像中颜色的重要性以及使用颜色的1型FRBS已经很高的IoU值,平均IoU的差异是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fuzzy Rule-based System using a Patch-based Approach for Semantic Segmentation in Floor Plans
Semantic segmentation models help with the extraction of information from images. Currently, Convolutional Neural Networks (CNNs) are the state of the art for performing such tasks but the interpretability in their predictions is low. Previous work had proposed the use of Fuzzy Logic Rule-based systems (FRBS) as an explainable AI classifier of pixels for segmentation of images. In this paper, we extend that approach by using the similarity between image patches as context information for our model. The type-1 FRBS that uses the proposed set of context information features reaches an average Intersection over Union (IoU) value 3.51% higher than the type-1 FRBS using colour information. The difference in average IoU is significant due to the importance of colour in the testing images and the already high IoU value from the type-1 FRBS using colour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信