动态图嵌入的弱监督分解方法

Seyed Amjad Seyedi, P. Moradi, F. Tab
{"title":"动态图嵌入的弱监督分解方法","authors":"Seyed Amjad Seyedi, P. Moradi, F. Tab","doi":"10.1109/AISP.2017.8324084","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization (NMF) is an effective method to learn a vigorous representation of nonnegative data and has been successfully applied in different machine learning tasks. Using NMF in semi-supervised classification problems, its factors are the label matrix and the membership values of data points. In this paper, a dynamic weakly supervised factorization is proposed to learn a classifier using NMF framework and partially supervised data. Also, a label propagation mechanism is used to initialize the label matrix factor of NMF. Besides a graph based method is used to dynamically update the partially labeled data in each iteration. This mechanism leads to enriching the supervised information in each iteration and consequently improves the classification performance. Several experiments were performed to evaluate the performance of the proposed method and the results show its superiority compared to a state-of-the-art method.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A weakly-supervised factorization method with dynamic graph embedding\",\"authors\":\"Seyed Amjad Seyedi, P. Moradi, F. Tab\",\"doi\":\"10.1109/AISP.2017.8324084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative matrix factorization (NMF) is an effective method to learn a vigorous representation of nonnegative data and has been successfully applied in different machine learning tasks. Using NMF in semi-supervised classification problems, its factors are the label matrix and the membership values of data points. In this paper, a dynamic weakly supervised factorization is proposed to learn a classifier using NMF framework and partially supervised data. Also, a label propagation mechanism is used to initialize the label matrix factor of NMF. Besides a graph based method is used to dynamically update the partially labeled data in each iteration. This mechanism leads to enriching the supervised information in each iteration and consequently improves the classification performance. Several experiments were performed to evaluate the performance of the proposed method and the results show its superiority compared to a state-of-the-art method.\",\"PeriodicalId\":386952,\"journal\":{\"name\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2017.8324084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

非负矩阵分解(NMF)是一种学习非负数据有力表示的有效方法,已成功应用于不同的机器学习任务。将NMF应用于半监督分类问题,其因子是标签矩阵和数据点的隶属度值。本文提出了一种动态弱监督分解方法,利用NMF框架和部分监督数据学习分类器。同时,利用标签传播机制初始化NMF的标签矩阵因子。此外,采用基于图的方法在每次迭代中对部分标记数据进行动态更新。这种机制可以丰富每次迭代中的监督信息,从而提高分类性能。通过实验对该方法的性能进行了评价,结果表明该方法与现有方法相比具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weakly-supervised factorization method with dynamic graph embedding
Nonnegative matrix factorization (NMF) is an effective method to learn a vigorous representation of nonnegative data and has been successfully applied in different machine learning tasks. Using NMF in semi-supervised classification problems, its factors are the label matrix and the membership values of data points. In this paper, a dynamic weakly supervised factorization is proposed to learn a classifier using NMF framework and partially supervised data. Also, a label propagation mechanism is used to initialize the label matrix factor of NMF. Besides a graph based method is used to dynamically update the partially labeled data in each iteration. This mechanism leads to enriching the supervised information in each iteration and consequently improves the classification performance. Several experiments were performed to evaluate the performance of the proposed method and the results show its superiority compared to a state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信