ProtoSeg:具有原型部件的可解释语义分割

Mikolaj Sacha, Dawid Rymarczyk, Lukasz Struski, J. Tabor, Bartosz Zieli'nski
{"title":"ProtoSeg:具有原型部件的可解释语义分割","authors":"Mikolaj Sacha, Dawid Rymarczyk, Lukasz Struski, J. Tabor, Bartosz Zieli'nski","doi":"10.1109/WACV56688.2023.00153","DOIUrl":null,"url":null,"abstract":"We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts\",\"authors\":\"Mikolaj Sacha, Dawid Rymarczyk, Lukasz Struski, J. Tabor, Bartosz Zieli'nski\",\"doi\":\"10.1109/WACV56688.2023.00153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们引入了一种新的可解释语义图像分割模型ProtoSeg,该模型使用来自训练集的相似补丁构建其预测。为了达到与基线方法相当的精度,我们调整了原型部件的机制,并引入了多样性损失函数,增加了每个类别中原型的多样性。我们展示了ProtoSeg发现语义概念,而不是标准的分割模型。在Pascal VOC和cityscape数据集上进行的实验证实了该方法的准确性和透明度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts
We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信