(私有)分布式有偏差反馈的kernel - ized Bandits

Fengjiao Li, Xingyu Zhou, Bo Ji
{"title":"(私有)分布式有偏差反馈的kernel - ized Bandits","authors":"Fengjiao Li, Xingyu Zhou, Bo Ji","doi":"10.1145/3579318","DOIUrl":null,"url":null,"abstract":"In this paper, we study kernelized bandits with distributed biased feedback. This problem is motivated by several real-world applications (such as dynamic pricing, cellular network configuration, and policy making), where users from a large population contribute to the reward of the action chosen by a central entity, but it is difficult to collect feedback from all users. Instead, only biased feedback (due to user heterogeneity) from a subset of users may be available. In addition to such partial biased feedback, we are also faced with two practical challenges due to communication cost and computation complexity. To tackle these challenges, we carefully design a new distributed phase-then-batch-based elimination (DPBE) algorithm, which samples users in phases for collecting feedback to reduce the bias and employs maximum variance reduction to select actions in batches within each phase. By properly choosing the phase length, the batch size, and the confidence width used for eliminating suboptimal actions, we show that DPBE achieves a sublinear regret of ~O(T1-α/2 +√γT T), where α ∈ (0,1) is the user-sampling parameter one can tune. Moreover, DPBE can significantly reduce both communication cost and computation complexity in distributed kernelized bandits, compared to some variants of the state-of-the-art algorithms (originally developed for standard kernelized bandits). Furthermore, by incorporating various differential privacy models (including the central, local, and shuffle models), we generalize DPBE to provide privacy guarantees for users participating in the distributed learning process. Finally, we conduct extensive simulations to validate our theoretical results and evaluate the empirical performance.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"(Private) Kernelized Bandits with Distributed Biased Feedback\",\"authors\":\"Fengjiao Li, Xingyu Zhou, Bo Ji\",\"doi\":\"10.1145/3579318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study kernelized bandits with distributed biased feedback. This problem is motivated by several real-world applications (such as dynamic pricing, cellular network configuration, and policy making), where users from a large population contribute to the reward of the action chosen by a central entity, but it is difficult to collect feedback from all users. Instead, only biased feedback (due to user heterogeneity) from a subset of users may be available. In addition to such partial biased feedback, we are also faced with two practical challenges due to communication cost and computation complexity. To tackle these challenges, we carefully design a new distributed phase-then-batch-based elimination (DPBE) algorithm, which samples users in phases for collecting feedback to reduce the bias and employs maximum variance reduction to select actions in batches within each phase. By properly choosing the phase length, the batch size, and the confidence width used for eliminating suboptimal actions, we show that DPBE achieves a sublinear regret of ~O(T1-α/2 +√γT T), where α ∈ (0,1) is the user-sampling parameter one can tune. Moreover, DPBE can significantly reduce both communication cost and computation complexity in distributed kernelized bandits, compared to some variants of the state-of-the-art algorithms (originally developed for standard kernelized bandits). Furthermore, by incorporating various differential privacy models (including the central, local, and shuffle models), we generalize DPBE to provide privacy guarantees for users participating in the distributed learning process. Finally, we conduct extensive simulations to validate our theoretical results and evaluate the empirical performance.\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了具有分布偏反馈的核化强盗。这个问题是由几个现实世界的应用程序(如动态定价、蜂窝网络配置和政策制定)引起的,在这些应用程序中,来自大量人口的用户为中央实体选择的行动的奖励做出了贡献,但很难从所有用户那里收集反馈。相反,可能只有来自用户子集的有偏差的反馈(由于用户的异质性)是可用的。除了这种偏反馈之外,我们还面临着通信成本和计算复杂性两方面的实际挑战。为了应对这些挑战,我们精心设计了一种新的分布式基于阶段-批处理的消除(DPBE)算法,该算法分阶段对用户进行采样以收集反馈以减少偏差,并在每个阶段中使用最大方差减少来批量选择操作。通过正确选择相位长度、批处理大小和用于消除次优行为的置信宽度,我们表明DPBE实现了~O(T1-α/2 +√γT T)的亚线性遗憾,其中α∈(0,1)是可以调整的用户采样参数。此外,与一些最先进的算法变体(最初是为标准的内核化强盗开发的)相比,DPBE可以显著降低分布式内核化强盗中的通信成本和计算复杂性。此外,通过结合各种差分隐私模型(包括中央模型、局部模型和随机模型),我们对DPBE进行了推广,为参与分布式学习过程的用户提供隐私保障。最后,我们进行了大量的仿真来验证我们的理论结果和评估实证性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(Private) Kernelized Bandits with Distributed Biased Feedback
In this paper, we study kernelized bandits with distributed biased feedback. This problem is motivated by several real-world applications (such as dynamic pricing, cellular network configuration, and policy making), where users from a large population contribute to the reward of the action chosen by a central entity, but it is difficult to collect feedback from all users. Instead, only biased feedback (due to user heterogeneity) from a subset of users may be available. In addition to such partial biased feedback, we are also faced with two practical challenges due to communication cost and computation complexity. To tackle these challenges, we carefully design a new distributed phase-then-batch-based elimination (DPBE) algorithm, which samples users in phases for collecting feedback to reduce the bias and employs maximum variance reduction to select actions in batches within each phase. By properly choosing the phase length, the batch size, and the confidence width used for eliminating suboptimal actions, we show that DPBE achieves a sublinear regret of ~O(T1-α/2 +√γT T), where α ∈ (0,1) is the user-sampling parameter one can tune. Moreover, DPBE can significantly reduce both communication cost and computation complexity in distributed kernelized bandits, compared to some variants of the state-of-the-art algorithms (originally developed for standard kernelized bandits). Furthermore, by incorporating various differential privacy models (including the central, local, and shuffle models), we generalize DPBE to provide privacy guarantees for users participating in the distributed learning process. Finally, we conduct extensive simulations to validate our theoretical results and evaluate the empirical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信