基于高斯射束和帧分解的快速单稳态散射计算

C. Letrou, M. Hariz, B. Galanti, A. Boag
{"title":"基于高斯射束和帧分解的快速单稳态散射计算","authors":"C. Letrou, M. Hariz, B. Galanti, A. Boag","doi":"10.1109/comcas52219.2021.9629065","DOIUrl":null,"url":null,"abstract":"Frame theory applied to source field decomposition facilitates the decomposition of an incident plane wave into a set of paraxial Gaussian beams. Spatial and spectral localization properties of such beams allow to bounce them through multiple reflections when reflecting surfaces are smooth and large enough as compared to wavelength. Gaussian beam spectral localization also yields dramatic reduction of the number of beams contributing to monostatic scattering cross section. An algorithm taking advantage of those properties is presented and applied to scattering by a set of blocks simulating an urban-like environment, with large dimensions as compared to wavelength. Numerical results will illustrate the method efficiency and will be compared to Fast Iterative Physical Optics results.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Monostatic Scattering Computation Based on Gaussian Beam Shooting and Frame Decomposition\",\"authors\":\"C. Letrou, M. Hariz, B. Galanti, A. Boag\",\"doi\":\"10.1109/comcas52219.2021.9629065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frame theory applied to source field decomposition facilitates the decomposition of an incident plane wave into a set of paraxial Gaussian beams. Spatial and spectral localization properties of such beams allow to bounce them through multiple reflections when reflecting surfaces are smooth and large enough as compared to wavelength. Gaussian beam spectral localization also yields dramatic reduction of the number of beams contributing to monostatic scattering cross section. An algorithm taking advantage of those properties is presented and applied to scattering by a set of blocks simulating an urban-like environment, with large dimensions as compared to wavelength. Numerical results will illustrate the method efficiency and will be compared to Fast Iterative Physical Optics results.\",\"PeriodicalId\":354885,\"journal\":{\"name\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comcas52219.2021.9629065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将框架理论应用于源场分解,有利于将入射平面波分解为一组近轴高斯光束。这种光束的空间和光谱定位特性允许它们通过多次反射,当反射表面光滑且与波长相比足够大时。高斯光束的光谱定位也产生了显著的减少光束的数量,有助于单稳态散射截面。提出了一种利用这些特性的算法,并将其应用于模拟类似城市环境的一组块的散射,与波长相比具有较大的尺寸。数值结果将证明该方法的有效性,并将与快速迭代物理光学结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Monostatic Scattering Computation Based on Gaussian Beam Shooting and Frame Decomposition
Frame theory applied to source field decomposition facilitates the decomposition of an incident plane wave into a set of paraxial Gaussian beams. Spatial and spectral localization properties of such beams allow to bounce them through multiple reflections when reflecting surfaces are smooth and large enough as compared to wavelength. Gaussian beam spectral localization also yields dramatic reduction of the number of beams contributing to monostatic scattering cross section. An algorithm taking advantage of those properties is presented and applied to scattering by a set of blocks simulating an urban-like environment, with large dimensions as compared to wavelength. Numerical results will illustrate the method efficiency and will be compared to Fast Iterative Physical Optics results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信