深度回归与支持向量机

A. Christmann
{"title":"深度回归与支持向量机","authors":"A. Christmann","doi":"10.1090/dimacs/072/06","DOIUrl":null,"url":null,"abstract":"The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik?s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), [epsilon]-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given.","PeriodicalId":161658,"journal":{"name":"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Regression depth and support vector machine\",\"authors\":\"A. Christmann\",\"doi\":\"10.1090/dimacs/072/06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik?s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), [epsilon]-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given.\",\"PeriodicalId\":161658,\"journal\":{\"name\":\"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/072/06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/072/06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由Rousseeuw和Hubert [RH99]提出的回归深度法(regression depth method, RDM)在连续响应变量的鲁棒回归领域发挥了重要作用。Christmann和Rousseeuw [CR01]表明RDM在二元回归的情况下也是有用的。Vapnik吗?s的凸风险最小化原理[Vap98]在统计机器学习理论中占据主导地位。重要的特殊情况是支持向量机(SVM), [epsilon]-支持向量回归和核逻辑回归。本文以模式识别为例,探讨了这些不同学科的方法之间的联系。给出了支持向量机和其他基于核的方法鲁棒性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression depth and support vector machine
The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik?s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), [epsilon]-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信