基于图的句法词嵌入

Ragheb Al-Ghezi, M. Kurimo
{"title":"基于图的句法词嵌入","authors":"Ragheb Al-Ghezi, M. Kurimo","doi":"10.18653/v1/2020.textgraphs-1.8","DOIUrl":null,"url":null,"abstract":"We propose a simple and efficient framework to learn syntactic embeddings based on information derived from constituency parse trees. Using biased random walk methods, our embeddings not only encode syntactic information about words, but they also capture contextual information. We also propose a method to train the embeddings on multiple constituency parse trees to ensure the encoding of global syntactic representation. Quantitative evaluation of the embeddings show a competitive performance on POS tagging task when compared to other types of embeddings, and qualitative evaluation reveals interesting facts about the syntactic typology learned by these embeddings.","PeriodicalId":282839,"journal":{"name":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Graph-based Syntactic Word Embeddings\",\"authors\":\"Ragheb Al-Ghezi, M. Kurimo\",\"doi\":\"10.18653/v1/2020.textgraphs-1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple and efficient framework to learn syntactic embeddings based on information derived from constituency parse trees. Using biased random walk methods, our embeddings not only encode syntactic information about words, but they also capture contextual information. We also propose a method to train the embeddings on multiple constituency parse trees to ensure the encoding of global syntactic representation. Quantitative evaluation of the embeddings show a competitive performance on POS tagging task when compared to other types of embeddings, and qualitative evaluation reveals interesting facts about the syntactic typology learned by these embeddings.\",\"PeriodicalId\":282839,\"journal\":{\"name\":\"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.textgraphs-1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.textgraphs-1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个简单有效的框架来学习基于从选区解析树中获得的信息的语法嵌入。使用有偏随机漫步方法,我们的嵌入不仅编码了单词的句法信息,而且还捕获了上下文信息。我们还提出了一种在多选区解析树上训练嵌入的方法,以确保全局语法表示的编码。定量评价表明,与其他类型的嵌入相比,这些嵌入在词性标注任务上的表现具有竞争力,定性评价揭示了这些嵌入所学习的句法类型的有趣事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-based Syntactic Word Embeddings
We propose a simple and efficient framework to learn syntactic embeddings based on information derived from constituency parse trees. Using biased random walk methods, our embeddings not only encode syntactic information about words, but they also capture contextual information. We also propose a method to train the embeddings on multiple constituency parse trees to ensure the encoding of global syntactic representation. Quantitative evaluation of the embeddings show a competitive performance on POS tagging task when compared to other types of embeddings, and qualitative evaluation reveals interesting facts about the syntactic typology learned by these embeddings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信