特征选择稳定性测度的比较

P. Drotár, Z. Smékal
{"title":"特征选择稳定性测度的比较","authors":"P. Drotár, Z. Smékal","doi":"10.1109/SAMI.2015.7061849","DOIUrl":null,"url":null,"abstract":"The feature selection is inevitable part of machine learning techniques in biomedical engineering and bioinformatics. Feature selection methods are used to select the most discriminative features, e.g. for disease classification. Even if there are plenty of feature selection methods the stability of these algorithms is still open question. Another issue with assessing the stability of feature selection is that there are several stability measures providing different views on stability. Here, we compare well-known stability measures and evaluate their performance on artificial and real data.","PeriodicalId":276598,"journal":{"name":"2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of stability measures for feature selection\",\"authors\":\"P. Drotár, Z. Smékal\",\"doi\":\"10.1109/SAMI.2015.7061849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feature selection is inevitable part of machine learning techniques in biomedical engineering and bioinformatics. Feature selection methods are used to select the most discriminative features, e.g. for disease classification. Even if there are plenty of feature selection methods the stability of these algorithms is still open question. Another issue with assessing the stability of feature selection is that there are several stability measures providing different views on stability. Here, we compare well-known stability measures and evaluate their performance on artificial and real data.\",\"PeriodicalId\":276598,\"journal\":{\"name\":\"2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2015.7061849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2015.7061849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

特征选择是生物医学工程和生物信息学中机器学习技术不可避免的一部分。特征选择方法用于选择最具判别性的特征,例如用于疾病分类。尽管有大量的特征选择方法,但这些算法的稳定性仍然存在问题。评估特征选择稳定性的另一个问题是,有几种稳定性度量提供了对稳定性的不同看法。在这里,我们比较了众所周知的稳定性措施,并在人工数据和实际数据上评估了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of stability measures for feature selection
The feature selection is inevitable part of machine learning techniques in biomedical engineering and bioinformatics. Feature selection methods are used to select the most discriminative features, e.g. for disease classification. Even if there are plenty of feature selection methods the stability of these algorithms is still open question. Another issue with assessing the stability of feature selection is that there are several stability measures providing different views on stability. Here, we compare well-known stability measures and evaluate their performance on artificial and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信