{"title":"传质原理:十年过去了","authors":"D. Allen, Sascha Troscheit","doi":"10.1090/CONM/731/14670","DOIUrl":null,"url":null,"abstract":"In this article we discuss the Mass Transference Principle due to Beresnevich and Velani and survey several generalisations and variants, both deterministic and random. Using a Hausdorff measure analogue of the inhomogeneous Khintchine-Groshev Theorem, proved recently via an extension of the Mass Transference Principle to systems of linear forms, we give an alternative proof of a general inhomogeneous Jarn\\'{\\i}k-Besicovitch Theorem which was originally proved by Levesley. We additionally show that without monotonicity Levesley's theorem no longer holds in general. Thereafter, we discuss recent advances by Wang, Wu and Xu towards mass transference principles where one transitions from $\\limsup$ sets defined by balls to $\\limsup$ sets defined by rectangles (rather than from \"balls to balls\" as is the case in the original Mass Transference Principle). Furthermore, we consider mass transference principles for transitioning from rectangles to rectangles and extend known results using a slicing technique. We end this article with a brief survey of random analogues of the Mass Transference Principle.","PeriodicalId":431279,"journal":{"name":"Horizons of Fractal Geometry and Complex\n Dimensions","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Mass Transference Principle: Ten years\\n on\",\"authors\":\"D. Allen, Sascha Troscheit\",\"doi\":\"10.1090/CONM/731/14670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we discuss the Mass Transference Principle due to Beresnevich and Velani and survey several generalisations and variants, both deterministic and random. Using a Hausdorff measure analogue of the inhomogeneous Khintchine-Groshev Theorem, proved recently via an extension of the Mass Transference Principle to systems of linear forms, we give an alternative proof of a general inhomogeneous Jarn\\\\'{\\\\i}k-Besicovitch Theorem which was originally proved by Levesley. We additionally show that without monotonicity Levesley's theorem no longer holds in general. Thereafter, we discuss recent advances by Wang, Wu and Xu towards mass transference principles where one transitions from $\\\\limsup$ sets defined by balls to $\\\\limsup$ sets defined by rectangles (rather than from \\\"balls to balls\\\" as is the case in the original Mass Transference Principle). Furthermore, we consider mass transference principles for transitioning from rectangles to rectangles and extend known results using a slicing technique. We end this article with a brief survey of random analogues of the Mass Transference Principle.\",\"PeriodicalId\":431279,\"journal\":{\"name\":\"Horizons of Fractal Geometry and Complex\\n Dimensions\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horizons of Fractal Geometry and Complex\\n Dimensions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/731/14670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horizons of Fractal Geometry and Complex\n Dimensions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/731/14670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article we discuss the Mass Transference Principle due to Beresnevich and Velani and survey several generalisations and variants, both deterministic and random. Using a Hausdorff measure analogue of the inhomogeneous Khintchine-Groshev Theorem, proved recently via an extension of the Mass Transference Principle to systems of linear forms, we give an alternative proof of a general inhomogeneous Jarn\'{\i}k-Besicovitch Theorem which was originally proved by Levesley. We additionally show that without monotonicity Levesley's theorem no longer holds in general. Thereafter, we discuss recent advances by Wang, Wu and Xu towards mass transference principles where one transitions from $\limsup$ sets defined by balls to $\limsup$ sets defined by rectangles (rather than from "balls to balls" as is the case in the original Mass Transference Principle). Furthermore, we consider mass transference principles for transitioning from rectangles to rectangles and extend known results using a slicing technique. We end this article with a brief survey of random analogues of the Mass Transference Principle.