异步事件相机的可解释像素强度重建模型

Hongwei Shan, Lichen Feng, Yueqi Zhang, Zhangming Zhu
{"title":"异步事件相机的可解释像素强度重建模型","authors":"Hongwei Shan, Lichen Feng, Yueqi Zhang, Zhangming Zhu","doi":"10.1109/AICAS57966.2023.10168635","DOIUrl":null,"url":null,"abstract":"Event cameras with high temporal resolution and high dynamic range have great potential in computer vision (CV) tasks. To utilize the deep neural networks directly, an efficient reconstruction method converting event-based data to frame-based is necessary. In this work, the interpretable Event Represented Intensity (ERI) model that recovers the logarithm of the intensity sensed by a dynamic vision pixel is proposed for the first time. The amplitude-frequency characteristic of the recovered logarithm of the intensity is used to construct the frame-based image to complete CV tasks. Experiment results on the N-Caltech101 dataset show that the proposed ERI model achieves the classification accuracy of 79.20%, which balances the performance and computation cost better.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interpretable Pixel Intensity Reconstruction Model for Asynchronous Event Camera\",\"authors\":\"Hongwei Shan, Lichen Feng, Yueqi Zhang, Zhangming Zhu\",\"doi\":\"10.1109/AICAS57966.2023.10168635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event cameras with high temporal resolution and high dynamic range have great potential in computer vision (CV) tasks. To utilize the deep neural networks directly, an efficient reconstruction method converting event-based data to frame-based is necessary. In this work, the interpretable Event Represented Intensity (ERI) model that recovers the logarithm of the intensity sensed by a dynamic vision pixel is proposed for the first time. The amplitude-frequency characteristic of the recovered logarithm of the intensity is used to construct the frame-based image to complete CV tasks. Experiment results on the N-Caltech101 dataset show that the proposed ERI model achieves the classification accuracy of 79.20%, which balances the performance and computation cost better.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高时间分辨率和高动态范围的事件相机在计算机视觉任务中具有很大的应用潜力。为了直接利用深度神经网络,需要一种有效的将基于事件的数据转换为基于帧的数据的重构方法。在这项工作中,首次提出了可解释的事件表示强度(ERI)模型,该模型可以恢复由动态视觉像素感知的强度的对数。利用强度恢复对数的幅频特性构造基于帧的图像来完成CV任务。在N-Caltech101数据集上的实验结果表明,本文提出的ERI模型达到了79.20%的分类准确率,较好地平衡了性能和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Interpretable Pixel Intensity Reconstruction Model for Asynchronous Event Camera
Event cameras with high temporal resolution and high dynamic range have great potential in computer vision (CV) tasks. To utilize the deep neural networks directly, an efficient reconstruction method converting event-based data to frame-based is necessary. In this work, the interpretable Event Represented Intensity (ERI) model that recovers the logarithm of the intensity sensed by a dynamic vision pixel is proposed for the first time. The amplitude-frequency characteristic of the recovered logarithm of the intensity is used to construct the frame-based image to complete CV tasks. Experiment results on the N-Caltech101 dataset show that the proposed ERI model achieves the classification accuracy of 79.20%, which balances the performance and computation cost better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信