O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg
{"title":"IRF:通过对话进行互动推荐","authors":"O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg","doi":"10.1145/3298689.3346966","DOIUrl":null,"url":null,"abstract":"Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IRF: interactive recommendation through dialogue\",\"authors\":\"O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg\",\"doi\":\"10.1145/3298689.3346966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3346966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.