IRF:通过对话进行互动推荐

O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg
{"title":"IRF:通过对话进行互动推荐","authors":"O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg","doi":"10.1145/3298689.3346966","DOIUrl":null,"url":null,"abstract":"Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IRF: interactive recommendation through dialogue\",\"authors\":\"O. Alkan, Massimiliano Mattetti, E. Daly, A. Botea, Inge Vejsbjerg\",\"doi\":\"10.1145/3298689.3346966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3346966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究不仅关注推荐的准确性,还关注影响推荐接受度的人为因素,如用户满意度、信任度、透明度和控制感。我们提出了一个通用的交互式推荐框架,它可以在非交互式推荐系统中添加交互功能。我们利用对话系统与用户进行交互,并设计了一个中间件层来提供交互功能,例如为推荐提供解释、管理从对话中学习到的用户偏好、偏好提取以及基于学习到的偏好提炼推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IRF: interactive recommendation through dialogue
Recent research focuses beyond recommendation accuracy, towards human factors that influence the acceptance of recommendations, such as user satisfaction, trust, transparency and sense of control. We present a generic interactive recommender framework that can add interaction functionalities to non-interactive recommender systems. We take advantage of dialogue systems to interact with the user and we design a middleware layer to provide the interaction functions, such as providing explanations for the recommendations, managing users' preferences learnt from dialogue, preference elicitation and refining recommendations based on learnt preferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信