{"title":"同步约束角子句","authors":"D. Mordvinov, Grigory Fedyukovich","doi":"10.29007/gr5c","DOIUrl":null,"url":null,"abstract":"Simultaneous occurrences of multiple recurrence relations in a system of non-linear constrained Horn clauses are crucial for proving its satisfiability. A solution of such system is often inexpressible in the constraint language. We propose to synchronize recurrent computations, thus increasing the chances for a solution to be found. We introduce a notion of CHC product allowing to formulate a lightweight iterative algorithm of merging recurrent computations into groups and prove its soundness. The evaluation over a set of systems handling lists and linear integer arithmetic confirms that the transformed systems are drastically more simple to solve than the original ones.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Synchronizing Constrained Horn Clauses\",\"authors\":\"D. Mordvinov, Grigory Fedyukovich\",\"doi\":\"10.29007/gr5c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous occurrences of multiple recurrence relations in a system of non-linear constrained Horn clauses are crucial for proving its satisfiability. A solution of such system is often inexpressible in the constraint language. We propose to synchronize recurrent computations, thus increasing the chances for a solution to be found. We introduce a notion of CHC product allowing to formulate a lightweight iterative algorithm of merging recurrent computations into groups and prove its soundness. The evaluation over a set of systems handling lists and linear integer arithmetic confirms that the transformed systems are drastically more simple to solve than the original ones.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/gr5c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/gr5c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous occurrences of multiple recurrence relations in a system of non-linear constrained Horn clauses are crucial for proving its satisfiability. A solution of such system is often inexpressible in the constraint language. We propose to synchronize recurrent computations, thus increasing the chances for a solution to be found. We introduce a notion of CHC product allowing to formulate a lightweight iterative algorithm of merging recurrent computations into groups and prove its soundness. The evaluation over a set of systems handling lists and linear integer arithmetic confirms that the transformed systems are drastically more simple to solve than the original ones.