有限生成矩阵群的Zariski闭包的计算

Klara Nosan, Amaury Pouly, S. Schmitz, M. Shirmohammadi, J. Worrell
{"title":"有限生成矩阵群的Zariski闭包的计算","authors":"Klara Nosan, Amaury Pouly, S. Schmitz, M. Shirmohammadi, J. Worrell","doi":"10.1145/3476446.3536172","DOIUrl":null,"url":null,"abstract":"We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Computation of the Zariski Closure of Finitely Generated Groups of Matrices\",\"authors\":\"Klara Nosan, Amaury Pouly, S. Schmitz, M. Shirmohammadi, J. Worrell\",\"doi\":\"10.1145/3476446.3536172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3536172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了计算有限生成矩阵群的Zariski闭包的复杂性。Zariski闭包先前被Derksen, Jeandel和Koiran证明是可计算的,但他们算法的终止参数似乎没有产生任何复杂性界限。在本文中,我们采用了一种不同的方法,并得到了定义闭包的多项式的阶的一个界。我们的界表明闭包可以在初等时间内计算。我们还得到了线性代数群链长度的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Computation of the Zariski Closure of Finitely Generated Groups of Matrices
We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信